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The viscous wall region was of particular interest.  Sufficient 
measurements were taken to give an accurate representation of both the 
streamwise and normal variations of the viscous wall region.  The data was 
Fourier analyzed to determine the extent of nonlinearities, the wavelength 
averaged flowfields, and the amplitudes and phases of the velocity 
responses.  The physical meaning of the data is interpreted in terms of 
pressure gradient effects along the wave surfaces.  Comparisons of the data 
with predictions from simple eddy viscosity models are also given. 
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CHAPTER 1 

INTRODUCTION 

When a turbulent fluid interacts with a wave spatial variations 

occur in the surface stresses and the velocity field.  These variations 

affect the transport of heat, mass, and momentum at the interfacial 

boundary.  The prediction of the flowfield over a wave is important to 

the understanding of many natural and industrial processes. 

The pressure distribution along a wave surface is of major interest 

in the problem of wave generation on large bodies of water and in 

determining when atomization occurs in two phase flows.  Shear stress 

variations play an important role in sediment transport in rivers and 

in describing interfacial instabilities on thin liquid films.  A 

knowledge of the surface stresses along a wave is also critical in 

predicting the motion of desert sand dunes and the dissolution 

patterns found in underwater caverns and melting ice. 

Previous investigations in this laboratory by Cook [ 17 ], 

Morrisroe [33 ], Zilker [48], Thorsness [44 ], and Abrams [ 2 ] 

have concentrated on the measurement of the pressure and shear stress 

along a solid sinusoidal wave.  Experiments were performed with waves 

having height to wavelength ratios of laJX  = 0.0125, 0.03125, 0.05, 
d 

* 
0.125, 0.200 and with a range of flowrates so that 0.0058 < a^ v/u  < 

d 

0.01 where a, is the wavenumber.  It was found that for 2a. J\  <  0.033 
d d 

and a^u /v < 27 the shear stress is perturbed linearly with wave 

amplitude.  That, is, the responses can be described by single harmonics 

with characteristic amplitudes and phases.  For a u / v > 27 shear 
d 

stress responses are nonlinear since the profiles become distorted and 



can no longer be described by single harmonics.  Pressure responses 

were observed to be linear for all nonseparated flows.  Separation 

can occur for waves with 2a^/A > 0.033 and the size of the reversed 

flow region increases with increasing 2a /A and with increasing 

* 
a^v/u .  The reversed flow region with 2a J\  = 0.05 waves is very 

thin and was observed to disappear approximately at the value of 

a^v/u predicted by the solution of the linear momentum equations. 

The above observations are consistent with pressure and shear 

stress measurements conducted over waves in other laboratories. 

Additional pressure measurements were performed by Stanton et.al [ 43 ], 

Motzfeld [ 34 ], Larras and Claria [ 27 ]. Zagustin [ 47 ], Kendall [ 24 ]. 

Sigal [ 41 ], Beebe [ 8 ], Gary et al. [12 ] and Lin et al. [30 ] and 

other shear stress data were obtained by Kendall f 24 ], Sigal [41 ], 

and Beebe [ 8 ]. 

Considerable progress has been made in the modelling of the 

pressure and shear stress distributions along waves that have small 

enough amplitudes to produce a linear response.  The analysis for 

this case is greatly simplified since the momentum equations can be 

linearized.  The critical issue is the specification of the wave 

induced Reynolds stresses.  The best model to date is the eddy 

viscosity Model D developed by Thorsness [ 44 ] and Abrams [ 2 ]. 

This model uses the mixing length hypothesis of Lyod, Moffat, and 

Kays [ 31 ].  The effects of pressure gradient and relaxation are 

taken into account by an empirical method that uses one lag constant. 

Model D provides a good prediction of the pressure and shear stress 

over a wide range of dimensionless wavenumbers, a.\j/u 
d 

* 



Measurements of the velocity field over a wave are not as 

numerous and detailed as those of surface stresses.  Motzfeld [34], 

Kendall [ 24 ], Hsu and Kennedy [ 20 ], Sigal [ 41 ], and Zilker [ 48 ] 

investigated the flowfield above waves under nonseparated flow 

conditions.  Separated flow over waves has been studied by Beebe [ 8 ]. 

Zilker [48], Buckles [lo ], and Kuzan [25 ].  Only the separated 

flow studies of Buckles and Kuzan involved sufficient measure- 

ments to give an accurate representation of the spatial variation of 

the flowfield and measured close enough to the wave surface to detect 

wave-induced perturbations within the lower viscous wall region. 

The primary purpose of this thesis is to extend the previous 

experimental studies by obtaining detailed measurements of the velocity 

field above waves with nonseparated flows.  Of particular interest are 

measurements within the viscous wall region which can be used as a 

test of the turbulence models of Thorsness [ 44 ] and Abrams [ 2 ]. 

Previous tests of these models have been limited to comparisons with 

surface stress data.  Two sets of velocity measurements were obtained 

at conditions corresponding to flows where linear and nonlinear shear 

stress responses are observed.  The conditions are 2a^/X = 0.03125, 

a^v/u = 0.008, a^u /v = 12.3 and 2a^/X = 0.05, a^v/u* = 0.00165, 

a^u /v = 95.2 respectively. 

The measurements were made in a water channel with a rectangular 

cross section of 2.0 in. x 24.0 in.  The overall channel length was 

about thirty-five feet, with the last five feet at the downstream end 

being the test section.  The bottom surface of this section was 

removable and had wave profiles of wavelength two inches machined 



across it.  Tests were conducted over the eighth wave in a series 

of ten waves.  The velocity data consisted of time-averaged and 

turbulent intensity profiles in the streanwise direction. 

Detailed measurements of the viscous wall region were made 

with the laser-Doppler velocimeter (LDV) techniques developed by 

Buckles [ 10 ].   The technique of obtaining velocities with LDV 

has several advantages over the classical hot film and hot wire 

methods which were used by Kendall [ 24 ]. Sigal [ 41 ], Beebe [8 ]> 

and Zilker [ 48 ].  A LDV requires no calibration, does not disturb 

the flow with a physical probe, can detect momentary flow reversals, 

and can operate in highly turbulent flows.  The key feature of the 

LDV used in this study is an optics system containing two beam 

expanders.  The beam expanders provided a small enough measurement 

volume to perform velocity measurements as close to the wave surface 

* 
as y-plus, y,u /v, equal to two and ten at the dimensionless wave- 

numbers, a v/u , of 0.008 and 0.00165 respectively.  Fifteen to 

twenty data points were taken vertically within the viscous wall 

region.  Good spatial resolution in the horizontal direction was 

achieved by conducting velocity measurements every tenth of a 

wavelength. 

The velocity measurements were obtained over finite amplitude 

waves where the application of linear theory is uncertain.  There- 

fore a nonlinear computer code was developed to predict the flow- 

field above finite amplitude waves.  The code solves the nonlinear 

Reynolds-averaged Navier-Stokes equations using spectral methods 

in the flow direction and finite differences in the normal 



direction.  The code is a modification of the boundary layer program 

of McLean [ 32 ] to the flow geometry of waves on the lower wall of 

a rectangular channel.  Previous linear and nonlinear wavy surface 

codes developed in this laboratory [i, 2, 45] have been limited 

to the prediction of boundary layer flows. ' 

A comparison of the velocity measurements with linear and non- 

linear calculations using the turbulence models of Thorsness [ 44 ] 

and Abrams [ 2 ] provides considerable physical insight into the 

nature of nonseparated flow over a wave surface. 



CHAPTER 2     ■. 

LITERATURE REVIEW 

This chapter reviews the literature on velocity measurements 

over solid and rigid two-dimensional sinusoidal wavy surfaces.  The 

discussion, which is facilitated by using the flow regime map of 

Abrams, Frederick and Hanratty [3 ], is presented in the chronol- 

ogical order in which the measurements were made. 

The flow regime map is shown in Figure 2.1.  The vertical axis, 

2a,/X, is the wave steepness and the horizontal axis is the wave- 

number, 2ir/X,  made dimensionless with respect to wall parameters. 

The wall parameters are the friction velocity, u = A /p, and the 
w 

kinematic viscosity, v, of the fluid.  The observed behavior for 

flow over solid sinusoidal waves can be divided into three regions: 

a region where the flows are separated, a nonseparated region where 

the shear stress response is linear, and a nonseparated region where 

the shear stress response is nonlinear.  Velocity measurements have 

been obtained in all three regions. 

The first velocity measurements over a wavy surface were 

conducted by Motzfeld [34 ].  A pitot tube was used in a low-speed 

wind tunnel to obtain mean streamwise velocity profiles above two 

sinusoidal waveforms containing six waves with X = 300 mm and values 

of 2a^/X equal to 0.05 and 0.100 respectively.  Profiles were 

taken at severalx/X positions and strong deviations from the flat 

plate profile were observed.  The major limitation of this study 

was that measurements close to the wave surface could not be obtained 

with the pitot tube technique.  From Figure 2.1 it is seen that both 

sets of measurements were obtained for nonlinear nonseparated flows. 
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Kendall [ 24 ] used hot wire probes to measure the velocity field 

above a smooth wavy neoprene rubber sheet that comprised a portion 

of the bottom floor of a low turbulence wind tunnel.  The sheet was 

mechanically deformed into twelve sinusoidal waves which could 

progress upwind or downwind at a controlled speed.  The wavelength 

of the waves was four inches and the steepness, 2a /X, was equal to 

0.0625.  Only one set of average velocity measurements was reported 

at zero wave speed.  Two streamwise velocity profiles were obtained 

at the limits of excursion of the cyclic velocity perturbation about 

the wavelength averaged flowfield.  The maximum and minimum 

perturbations occurred at x^/X = 0.96 and x /X=0.35 respectively. 

Figure 2.1 shows that these data are located in the separated flow 

regime.  However, no reversed flows were observed even at the closest- 

* 
measurement point of y^u /v = 12.4.  This is consistent with the 

flow visualization experiments of Zilker [ 48 ] which indicate that 

the separated region is extremely thin for the wave steepness and 

flowrate used by Kendall.        ' 

Hsu and Kennedy [ 20 ] studied turbulent air flow in wavy pipes. 

The wavy pipes had an average diameter of 0.408 ft. and were con- 

structed by forming fiberglass onto wooden mandrels.  Hot wire probes 

were used to investigate the flowfield over waves with steepnesses, 

2a^/X, equal to 0.0222 and 0.0444 and wavelengths of 1.67 ft. and 

0.83 ft. respectively.  A constant Reynolds number of 1.13 x IQ^ 

based on the average pipe diameter was maintained in the experiments. 

Longitudinal components of the mean and turbulent velocities 

were measured with a single-wire probe.  Tangential and radial 



components, as well as Reynolds stresses,were obtained with a 

cross-wire probe.  Profiles were taken at l/8th wavelength increments 

in the flow direction.  Each profile consisted of only about ten 

velocity measurements.  The closest measurement to the wavy surface 

was at approximately y-plus, y.u /v, equal to 120.  It was observed 

that the mean velocity profiles at positions symmetrical about the 

location of minimum (or maximum) diameter are nearly identical. 

Turbulent intensities remained constant along the pipe within a 

central core covering about sixty percent of the radius.  The data 

of Hsu and Kennedy is located in the nonlinear shear stress response 

region of Figure 2.1. 

Sigal [ 41 ] made velocity measurements over two geometrically 

similar wavy surfaces in a turbulent boundary layer of a low-speed 

wind tunnel.  The waves were constructed of smooth aluminum sheeting 

deformed to a sinusoidal shape.  The two wavy sheets each contained 

five waves of steepness, 2a,/X, equal to 0.055 and had wavelengths 

of six and twelve inches respectively.  Measurements of the average 

and fluctuating velocities parallel to the wave surface were 

obtained with a single sensor hot wire probe.  In addition, average 

and fluctuating velocities in the streamwise and normal directions 

as well as Reynolds stresses were obtained with an x-array hot wire 

probe.  The closest measurements to the wave surface were at about 

y,u /v equal to ten. 

Profiles were taken at only four positions along each wave surface 

above the locations where 
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1) C is a minimum, 

2) C' equals zero and the pressure gradient is negative, 

3) C is a maximum, 

and      4) C' equals zero and the pressure gradient is positive, 

where C* is the local wall pressure coefficient.  The four locations 

correspond to X /A positions of approximately 0.0, 0.25, 0.50, and 0.75 

respectively.  Figure 2.1 shows the location of Sigal's data in the 

nonlinear shear stress response region of the flow regime map. 

Velocity profiles at the crests and troughs showed strong positive 

and negative perturbations respectively about the flat plate profile. 

These disturbances extended to several thousand y-plus units, y u /v, 

above the wave surface.  In contrast, the profiles corresponding to 

C' equal to zero showed smaller perturbations that became negligible 

at about y-plus equal to 300.  For both pairs of profiles the positive 

and negative deviations are approximately equal in magnitude.  The 

wavelength average profiles are in close agreement with the flat plate 

profile.  Strong streamwise variations in the turbulent intensities 

were also noted. 

Beebe [8 ] investigated large amplitude wavy surfaces as a 

particular form of surface roughness.  Waves with X equal to 4.2 inches 

and 2a^/X equal to 0.119, 0.238, and 0.405 were constructed out of 

styrofoam and covered with felt.  Average streamwise velocity profiles 

were taken over the crests with a pitot tube.  Turbulent intensities 

and Reynolds stresses were also measured above the crests with a 

two-wire probe.  All measurments were performed at conditions within 

the separated flow region of Figure 2.1 but no velocities within the 
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the separated bubble could be obtained with the pitot tube and hot 

wire techniques. 

The first detailed set of velocity measurements in this 

laboratory were obtained by Zilker [ 48 ] over smooth Plexiglas waves 

with 2aJX  equal to 0.0125, 0.03125, 0.05, 0.125 and 0.200.  Each 

wave test surface contained ten waves of wavelength two inches and 

was part of the bottom wall of a rectangular channel.  A split film 

sensor was used to obtain average and fluctuating strearawise velocities. 

Normal velocities, normal fluctuations and Reynolds stresses were also 

measured but are subject to a degree of uncertainty since the normal 

velocities had unrealistic values at the center of the channel. 

Profiles were taken at one-tenth wavelength increments in the stream- 

wise direction. All measurements were made at a Reynolds number of 

8000 based on the half channel height. 

Figure 2.1 shows that the above flowrate places the two waves 

of smallest amplitude within the linear shear stress response region. 

The wave with 2a /A equal to 0.0125 did not perturb the flowfield 

enough to differentiate profiles atanyx^/X position from flat channel 
d 

results.  Average velocity profile data obtained over the 0.03125 

wave surface began to reflect the presence of the sinusoidal boundary. 

Flow visualization experiments indicated that reversed flow 

regions existed for the waves with 2a /A equal to 0.05, 0.125, and 

0.200.  The separated region for the 0.05 wave was very thin and 

thought to be below the lowest velocity measurement at approximately 

y^u /v equal to ten.  This is confirmed by recent LDV measurements 

at the same conditions by Kuzan [   ] which show that the time 
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averaged velocity field does not reverse as close to the wave surface 

as y^u /v equal to two.  The reversed flow portions of the flowfields 

over the 0.125 and 0.200 waves were much larger and could not be 

studied since split film sensors do not distinguish between positive 

and negative velocities. 

Buckles [ 10 ] conducted the first detailed study of separated 

flow over a wavy surface.  The measurements of Zilker were extended 

to include the reversed flow regions above waves with 2a,/A = 0.125 
d 

and 0.200.  A LDV was used to detect negative velocities.  Average 

and fluctuating velocities were obtained at a Reynolds number of 

12,000 based on the half channel height.  Profiles were taken at 

streamwise increments no greater than one-tenth of a wavelength 

begxnnmg as close to the wave surface as y-plus, y,u /v, equal to 

3.5.  The size, shape, and extent of the time-averaged separation 

bubble was determined for both waves.  The thickest point of the 

separated region over the 0.200 wave was found to be of the order 

of the wave amplitude.  The separation bubble above the 0.125 wave 

is about one-third the thickness.  It was noted that there is no   . 

position above the wave surfaces where the flow is separated at all 

times.  Similarities between separated flow over waves and a classical 

shear layer were also observed. 

Kuzan [ 25 ] extended Buckles work by studying the effect of 

flowrate on the separation bubble.  LDV measurements were taken above 

a wave with 2a,/A equal to 0.200 at a Reynolds number of 30,000.  The ■■ 

separated region was observed to shrink uniformily as the Reynolds 

number increases.  That is, the separation bubble was inclined in the 

trough at the same angle for the two flowrates tested. 
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CHAPTER 3 

THEORY 

This chapter is in three sections.  Section I presents a 

nonlinear analysis for turbulent flow over finite amplitude waves 

in a rectangular channel.  In Section II the turbulent stress models 

used in the above theory are described.  Section III gives a check 

of the nonlinear analysis by comparing surface stress results for 

very small amplitude waves with the linear theory of Thorsness [44 ] 

and Abrams [ 2 ] and with literature data.  A comparison of the 

nonlinear analysis with the LDV measurements over finite amplitude 

waves is given in Chapter 6. 

I.  Nonlinear Channel Analysis 

The linear theory of Thorsness [ 44 ] and Abrams [ 2 ] is strictly 

valid only for boundary layer flows with waves of infinitesimal 

amplitude.  This section discusses a nonlinear analysis and a compu- 

tational method for extending the calculations of Thorsness and Abrams 

to the case of finite amplitude waves on the bottom wall of a rect- 

angular channel.  The method is a modification of the boundary layer 

analysis of McLean [ 32 ]. 

A.  Governing Equations 

Prediction of the turbulent flowfield over waves of finite amplitude 

was achieved by solving the nonlinear Reynolds-averaged Navier-Stok.es 

equations.  These momentum equations are shown below for two-dimensional 

steady-state incompressible flow in Cartesian coordinates: 
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3u. 3u 
+ V 

d 3x,    d 3y 
l^d 
p 3x 

+ V 

^2 

.   2 ax, 
d 3y, 

3x,    d d    3y  ^  d d^ (3.1) 

3v^ 3Vj 
d ^    d 

d 3x, d 3y, 
d a 

1 ^Pd     I ^S   ^\ 
+ V   —   + 

p 3y. 3x ■'y'.l 

3x. d d    3y,    d d (3.2) 

where u ,u' and v >v' are time-averaged and fluctuating velocities in the 

x^ and y directions respectively.  The subscript "d" refers to 

dimensional variables. 

The wave surface is the sinusoid 

^d = ^d "" (Vd^ (3.3) 

where a, is the wave amplitude, a,= 2TT/X is the wavenumber and A is 
u d 

the wavelength. 

The boundary conditions at the wave surface and the top wall of 

the channel are no slip and may be written as 

u^(x^. a^cosa^x^)= v^(x^, ^d'^"^ Vd^ = ° (3.4) 

and 

"d^^d'^T^ = ^d^^d'^T^ = °' (3.5) 
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where y^ is the coordinate of the top wall of the channel.  In the 

horizontal direction the boundary conditions are periodic and given by 

^d^^'^d^ = "d^^'^d^' (3.6) 

and 

v,(0,y,) = V rx.yj (3.7) 

B.  Numerical Solution 

It is desirable to perform computations on a rectangular region. 

This was accomplished by a conformal mapping of the physical domain 

0 < x^ < X; a^cos(a^x^) ^ y^ < y^ to the rectangular region 

0<e<2Tr; 0  < T]  < n^,  where n.^, is the transformed coordinate of 

the top wall of the channel.  The map is given by the following 

orthogonal transformation developed by Caponi et al. [11]: 

ajX, =  e +    )    — 
d d       • 1 1 

1=1 
sm IE 

cosh i (n^ - n) 

sinh i rir. (3.8) 

'^d^d = ^ + ^ -  I      ^ cos i £ 
i=l 

sinh i(n.j, - n) 

sinh i n„ (3.9) 

The coefficients b^ can be chosen to approximate any given periodic 

and symmetrical surface.  Eleven terms were found to be sufficient to 

fit the wave surface y^ = a^cos a^x^ for 2a^/A S  0.05.  Figure 3.1 

shows the physical and transformed regions.  Equations (3.8) and (3.9) 

can easily be modified to accommodate asymmetric surfaces [ 32 ]. 
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The momentum equations (3.1) and (3.2) were solved in streamfunction- 

vorticity form.  The streamfunction, ^,,   and the vorticitv, w , are 
d d 

defined by. 

9v,   9u 

d  3x. 3y, 
(3.10) 

dip . 

d   3y, (3.11) 

and 

c 
^d " ~ 3x. (3.12) 

McLean [ 32] has shown that in the transformed coordinates, (e,n), the 

equations of motion become 

•"d = 
= - J 

9^(i; d'^ii 

3£ ^r] 
(3.13) 

and 

3aj dii,        dbi.   3di. 
ad    d  d 

9e 9n   9n 3e 
9e 3n 

(V + V ) a) 
t  d 

^f 
■ 2    2 
3 ti. 3 V 

d    t 
2   2 

^^d  '^d 

-2 

2   2     ?   ? 
9 i|j, 9 v^   9^<J;^ 3 V 
 d  t ^   d   t 

3x^3y^3x^3y^   ^yj     Sx^ 
(3.14) 
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where the Jacobian, J, is defined by 

J = 

2     2 
3 X,   3 X, 
—4 + —^ 
3e 3n 

-1 

(3.15) 

In the derivation of equation (3.14) the turbulent stress terms in 

equations (3.1) and (3.2) have been modeled with an isotropic eddy 

viscosity according to the following constitutive equations: 

1 3u 
u^ul =-R    =v2S    =v2, 
d d  p   x.x    t  x.x,   t   3x, 

d d        d d d 
(3.16) 

1 dv, 
, ,v ,      R    = v^ 2S    = V  2 —-^ , 
d d  p   y^y^   t  y^y^   t   3y^ 

'd^d 
(3.17) 

asui 

'^ "^       Vd 
= V  2 S 

^d^d 
= V 

3u,   3v. 

3y,   3x^ (3.18) 

Models for the eddy viscosity are described in Section II. 

The no slip boundary conditions in the transformed region are 

3il; 3ijj 

(e,0) = -^  (£.0) = 0 
3n 3e 

(3.19) 

and 

3^^ 3'^d 

"3Tr ^''V =Tr ^"'V = ° (3.20) 
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at the top and bottom walls respectively.  In the horizontal direction 

the periodic boundary conditions become 

^^(0, n) = i|^^(2Tr. n) (3.21) 

and 

0)^(0, n) = CO^(2TT, n) .  ■, (3.22) 

In order to resolve the steep velocity gradients near the two 

surfaces, the vertical coordinates were stretched according to the 

following equation: 

n = n^ 
tan •^[-b(l - 2z)] - tan ''"[-b] 

2 tan""*" [+b] 
(3.23) 

where z is the unstretched coordinate and b is a stretching parameter. 

Figure 3.2 shows an example of the stretched coordinate system in the 

physical domain for 2a,/X =0.05 and b = 5 with a 9 x 81 mesh.  Details 

of the coordinate system in the near wall region, which is not visible 

in this figure due to the fine spacing, is discussed below. 

Table 3.1 shows the stretching parameters and the number of 

vertical points used for the computational studies of the two wave 

steepnesses investigated.  These parameters provide the necessary grid 

spacing to resolve accurately the flowfield in the vertical direction. 

Resolution was verified by reducing the number of grid points from 

151 to 81 for the case of 2a_,/X = 0.05 and Re^ = 38,800.  Predictions 
d b 

of surface stresses and velocities differed by only about one percent. 



Figure 3.2  Stretched Coordinate System in Physical Domain, 
2a,/X = 0.05, b = 5, 9 X 81 Mesh 
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The resolution is illustrated in Figures 3.3 and 3.4 which show the 

discrete velocity profiles obtained using the parameters in Table 3.1 

in a flat channel with Re = 6400 and 38,800 respectively.  These 

flat channel profiles represent the average vertical resolution found 

over one wavelength.  The resolution is slightly higher at the crests 

and slightly lower over the troughs due to the transformed coordinates 

and the change in cross sectional area.  Note that there are 3,4 grid 

points in the viscous sublayer (y u /v < 5) and 17,24 grid points in 

the viscous wall region (y^u /v < 40) for Re = 6400 and 38,800 

respectively.  These numbers are also included in Table 3.1. 

Numerically, the vertical derivatives are evaluated by finite 

differences.  The first, second and third derivatives are approximated 

as 

3(j) ^ n,m+l   n,m-l  9z 

3n ~      2Az       Jn (3.24) 

^2,   <j)   -, - 2d)   - d)     r  ^2 
9 0 ,  n,m+l n,m   n,m-l  32 

3n (Az)' 9n 

tj)   , - d) 
,  n,m+l  ^n,m-l 

2Az 
9 z 

9n^ 
(3.25) 

and 

iA  , ^n,nri-2 " ^^.m+1 + ^'^n,m-l ' '^n,m-2 1 

an" 

r       ^3 
0 2. 

(Az)- 9n 

- 2 
,  n,m+l n,m   n,m-l \lz_ 

■    (Az)^ 

9 z 

^ ^ 9TI '' 

^   'n,m+l ~ '^n,m-l 

2Az 

,3 
d Z 

^ 9n " 

(3.26) 



22.0 

20.0 

18.0 

16.0 

14.0 

12.0 
d 

u* 10.0 

8.0 

6.0 - 

4.0 - 

2.0 - 

0.0 L 

Viscous 
sublayer 

10' 

■ ' ' ' I 

Viscous 
wall 
region 

1 I I 1—1 I I 1 

-I—I—I I I I -t 1 1 1 1—I—I—r- 

o "-"•. 

I  I I I I I 

10 ^d" 10 

o 
o 
a 
a 
o 

o 

t I  I  I i» I I 

10 

Figure 3.3  Discrete Flat Channel Profile, Re = 6400, b = 5, 
81 Vertical Points 



25.0 1—I—I—I—I I 11 

20.0 - 

Viscous 
sublayer 

15.0 

A 
10.0 

5.0 

Viscous 
wall 
region 

0.0 -J 1 1 I I I I I 

1 1 1—I—I I I I  1    I 1—I—I—I—r- 

10 10 *   2 
^d" 10 

1 1  I—I ■ ' ■ ■ ' 

10 
I 1—aJ—1—1 I I I 

3 , _4 10 

Figure 3.4  Discrete Flat Channel Profile, Re = 38,800, b = 15, 
151 Vertical Points 

Is) 
4^- 



25 

where  <})   refers to either the streamfunction 'J;^ or the vorticitv co . n,ni (X a 

The derivatives of z arise because of the coordinate stretching. 

The horizontal derivatives are evaluated by spectral methods. 

Since the flowfield is assumed to be periodic, the streamfunction and 

vorticity may be represented by the following discrete Fourier series 

at constant n: 

N/2-1    ik£ 
*(^i)ln =  ^ ,  V^ ^^ (3.27) 

^     ^    k=-N/2  ^ ... 

where N+1 is the number of points in the horizontal direction (crest to 

crest), e  = 2Trj/N, and 0 ^ j ^ N.  The Fourier coefficients, y , are 
-^ IS. 

calculated by a fast Fourier transform routine.  The horizontal 

derivatives are given by,. 

3*(e.) 

3e 

N/2-1       .^^ 
I ikY,e^ ^j (3.28) 

k=-N/2    ^ 

and 

3^*(e.) I   N/2-1    o     ., 
2     ~ ^    (-k ) Y, e  2 (3.39) 

3e    'n k=-N/2      '^ 

Good spatial resolution in the horizontal direction was obtained 

with nine points (crest to crest) and four Fourier harmonics. The 

nine spectral points are equivalent to approximately 18 finite 

difference points.  A rough rule of thumb given by Orszag [35] is 

that a finite difference method requires a factor of 2 more resolution 

in each spatial direction than a spectral method to achieve 5-10 
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percent accuracy.  Tests with 17 points and 8 harmonics gave the 

same results for waves with 2aJX  = 0.05. 
d 

The discretised equations were solved by Newton's method. 

Since the Jacobian matrix has substantial zero structure, a sparse 

matrix solver developed by Stadtherr [ 42] was used to lower 

storage, requirements.  A summary of the approximate storage require- 

ments and run times on a VAX 11/780 is given in Table 3.2.  The 

numbers in parentheses refer to values obtained by treating the 

Jacobian matrix as full.  It should be noted that although the sparse 

matrix solver substantially lowered the storage requirements, no 

reduction in run times was  observed.  All runs were performed iu 

double precision. 

Cartesian streamwise velocities were calculated from results 

in transformed coordinates by use of the following chain rule 

liquation:        .■,.'.■" 

"d^^d'^d^ =^=^-37: + ir^ (3.30) 

A complete listing of the nonlinear channel computer code is 

given in Appendix A. 



Flow 
Conditions Mesh 

Storage 
Requirement 
(M bytes) 

Run 
Time 

(CPU hours) 

2a^n  = 0.03125 9 X 81 1.2 (4.0) 5 (5) 

Re^ = 6400 
b 

2a,/A = 0.05 
d 9 X 151 2.4 20 

Re. = 38,800 
D 

Table 3.2  Storage Requirements and Run Times 
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II.  Models for Turbulent Stresses 

A channel flow consists of a wall region and a core region where 

the eddy viscosities behave differently.  The following equation by 

Reynolds and Tiederman [ 38 ] was used to describe the eddy viscosity: 

1^^' 
^d^ 

2h, 3 -4- 

^              "1 2 1 
^d 

+  2 
h , I   ^ . J 

1 - exp 

1/2 -i2 

t P  vA 

1/2 

(3.31) 

where h^ is the average half channel height, K  is the von Karman 

constant, and T^ is the local shear stress in the fluid.  The van Driest 

parameter. A, is a measure of the thickness of the viscous wall region. 

Equation (3.31) is an adaptation for a channel of an expression first 

suggested by Cess [ 13 ] for pipe flow.  The expression is a combination 

of van Driest's [46 ] wall region law and Reichardt's [ 36] middle law. 

The Cess profile provides a smooth transition between the inner and 

core regions because it is continuous and analytic. 

In equation (3.31) the variable y' refers to a physical distance 

from either the wave surface or the top wall of the channel.  In this 

analysis y^ is measured from the wave surface for grid points at or 

below the center line of constant n.  Above this line y' is measured 

from the top wall.  Three methods of evaluating y' were investigated; 
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1) along a line of constant e, 

2) along a line normal to the surface,- 

and      3)  along a vertical line to the surface. 

Figure 3.5 illustrates the three types of distances.  The three 

distances are identical for waves of infinitesimal amplitude. 

It should be noted that for a channel it is not appropriate to 

model the eddy viscosity with a mixing length as did Thorsness and 

Abrams for a boundary layer flow.  Mixing length theories predict 

zero eddy viscosity at the channel center.  Measurements show that 

the eddy viscosity is large and nearly constant in the core region. 

Figure 3.6 shows the Cess eddy viscosity profile for a flat channel 

with Re^ = 6400, K = 0.48 and A = 33. 

The nonlinear channel calculations were performed with turbulence 

Models C and D developed by Thorsness [ 44 ] and Abrams [ 2 ]• 

A.  Model C 

Model C  is simply the Cess eddy viscosity profile, equation (3.31), 

with the flat channel value of the van Driest parameter, A.  Although 

the value of A is constant, the eddy viscosity varies slightly in 

the flow direction since it is a function of the local shear stress. 

Turbulent stresses change along the wave due to variations in both 

the eddy viscosity and the local rate of strain.  See equations (3.16)- 

(3.18). 

B.  Model D 

* 
Model D  is an extension of Model C  in which pressure gradient 

effects on the turbulence are taken into account.  In this model the 
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Figure 3.6  Cess Eddy Viscosity Profile (Flat Channel), 
Re  = 6400, K = 0.48, A = 33 
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van Driest parameter. A, is used as a scale factor that governs the 

thickness of the viscous wall region.  The viscous wall region thickens • 

with increasing negative pressure gradient and thins with increasing 

positive pressure gradient.  For equilibrium boundary layers Loyd, 

Moffat and Kays [31] suggest the following functional dependence on A 

+ *3 
on the dimensionless pressure gradient, p = (dp /dx )(v/pu  ),      ~ 

A = A 
+     +2 

1 + p k^ + p k^ + (3.32) 

where A is the flat channel value of A and k and k are empirical 

constants.  Loyd et al. have argued that for a nonequilibrium condition, 

such as exists in flow over waves, an effective pressure gradient, 

^eff  should be used in equation (3.21) where 

^  Peff   P  - Peff 

d ]     k 

and k^ is an empirical lag constant.  This, in effect, introduces a 

lag between the imposition of a nonzero pressure gradient and a change 

of scale in the viscous wall region.       ' 

III.  Test of Channel Analysis 

The nonlinear channel analysis was tested by comparing surface 

stress results for the limiting case of very small amplitude waves 

with the linear boundary layer analysis of Thorsness [44] and Abrams 

[2] and with literature data.  The channel calculations were performed 
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with 2h^/A = 1.0, 2a^/X = 0.001, K = 0.48, and A = 33.  The channel 

height to wavelength ratio, 2h,/A, was chosen to correspond to that 

of the channel in this laboratory.  The dimensionless wave amplitudes 

ranged from a^ u /v = 0.0314 at a , v/u* = 0.1 to a, u /v = 6.28 at 
d u d 

* * 
a^ v/u  = 0.0005.  Since a,u /v was always much less than 27 a 

linear response was ensured.  Selection of the Cess profile constants, 

K and A, is discussed in Chapter 5, Section I.  All of the calculations 

presented in this section used turbulence Model D with k, = -35, 

k^ = 0, and k = 1800 as suggested by Abrams [ 2 ]. 

Predictions of the amplitude of the shear stress responses are 

given in Figure 3.7 compared with the data of Abrams [ 2 ].  Abrams 

obtained linear shear stress responses in a channel with 2h,/X = 1.0 
d 

and 2a^/X = 0.014.  This figure shows that with turbulence constants 

k, = -35 and k^ = 1800 the channel analysis provides the best fit to 

the data.  The boundary layer calculations underpredict the data and 

were found by Thorsness [ 44 ] to be low for the range of contants 

-60 < ki < -15 and 1500 < ^  < 6000. 

Phase angles of the shear stress are given in Figure 3.8.  Again, 

for k^ = -35 and k^ = 1800, the best fit to the data is seen with 

the channel analysis.  Better agreement might be obtained with a 

slight reduction of k^.  However, the lengthy nature of the channel 

calculations prohibited fine tuning of the turbulence constants. 

Amplitudes and phases of pressure responses are shown in Figures 

3.9 and 3.10 compared with literature data.  The amplitudes predicted 

by the boundary layer and channel analyses are in close agreement. 

However, significant differences in the phase angles are observed 
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between the two methods of calculation.  At very small a^v/u   ,  where 

the flow is in equilibrium with the wave, zero phase shift in the 

pressure field is expected (9- = 180°).  Here the channel analysis 

appears to be qualitatively more correct tha:n the boundary layer 

analysis as it predicts a closer approach to 180°.  At large 

a,v/u the two theories differ greatly.  This is not surprising 

because the boundary layer analysis of Thorsness and Abrans assumes 

a deep logarithmic layer while the logarithmic layer in a channel 

is very thin under these conditions.  A quantitative check of the 

accuracy of the pressure calculations is not possible.  This is 

because few pressure measurements have been made over wavy surfaces 

and those available show large scatter.  Comparisons with theory 

are further complicated since the literature data-were obtained in 

many different flow geometries including boundary layers, channels, 

and pipes. 
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CHAPTER 4 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

The purpose of the experimental work was to obtain velocity profiles 

in the viscous wall region (y u*/v < 40) for turbulent flow over a solid 

sinusoidal wavy surface with small enough amplitude that the flow does 

not separate.  The major disturbances in the flowfield are expected to 

be within this thin region.  The profiles will give a better physical 

understanding of how the presence of a wavy surface perturbs a turbulent 

flowfield and can be used as a test of the turbulence models of 

Thorsness [45] and Abrams [ 2 ]. 

Fluid velocities were measured using laser-Doppler velocimetry. 

This method was chosen because it is a non-obtrusive measurement technique 

with a small enough "probe"size to resolve the viscous wall region. 

Section I of this chapter describes the flow loop and test section. 

Section II discusses the optical traverse and section III describes the 

LDV system and data acquisition. 

I.  Flow Loop and Test Section 

The experiments were carried out in a horizontal rectangular water 

channel originally built by Cook [17] and later modified by Zilker [48] 

and Buckles [10].  A detailed description of this flow loop may be 

found inathesisby Buckles [9 ],  Consequently the description here is 

limited to the essential features. 

A schematic of the flow loop is shown in Figure 4.1.  The rectangular 

channel has a cross section 2 in. high and 2 ft. wide and a length of 

27.5 ft. 
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Figure 4.1  Schematic of Low Loop 
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9. Small pump 

10. Large pump 
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The first 23.5 ft. of the channel is made of stainless steel and 

provides approximately 70 hydraulic diameters for flow development 

before the test section.  The existence of fully developed turbulent 

flow at the entrance to the test section has been verified by Zilker [48] 

and Thorsness [44].  The channel is also wide enough that the mean 

flow is essentially two-dimensional. 

The pump is a Worthington 6CNG84 centrifugal pump with a 5 h.p. 

motor that can deliver flow rates of up to 800 g.p.m.  This flow rate 

corresponds to a channel Reynolds number of 42,000 based on the half 

channel height and the bulk velocity. 

The downstream end of the channel is a 58 in. long Plexiglas 

test section in which the velocity measurements were performed.  The 

top wall of this section is flat and a portion of the bottom wall 

consists of a 24 in. by 27 in. removable sinusoidal wavy surface. 

The waves were machined with the mean wave level at the level of the 

lower wall.  This was to ensure that there was no change in the mean 

cross-sectional area.  Each side of the test section contains a 

5 in. X 1-1/2 in. glass window to allow the laser beams of the LDV 

system to pass through one side of the channel and be viewed by the - 

receiving optics on the other side. 

Velocity measurements were obtained over waves of amplitude 

0.03125 in. and 0.05 in. at Reynolds numbers of 6400 and 38,830 

repsectively.  Each wave surface contained ten waves of wavelength 

two inches and the tests were conducted over the eighth wave at one- 

tenth wavelength increments.  Details of the construction of the wave 

surfaces may be found in theses by Zilker [48] and Cook [17]. 
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II.  Modifications to Optical Traverse 

Buckles [10] constructed a traversing mechanism for movement of 

the LDV system in the normal and streamwise directions.  The traverse 

was modified to increase its accuracy of movement and to decrease its 

susceptabillty to vibration.  Accurate vibration free movement was 

necessary to conduct measurements close enough to a wave surface to 

resolve the viscous wall region. 

The mechanism's vertical motion is on twin stainless steel 

precision ground shafts.  They are mounted vertically and parallel to 

each other on opposite sides of the unistrut structure that supports 

the flow loop.  On each shaft are two linear ball bearing pillow 

blocks. The bearing blocks are mounted to a vertically movable rigid 

cage constructed of aluminum I-beams.  Connected to the top of this 

cage are a pair of eleven foot I-beams that run perpendicular to the 

channel test section.  This pair of beams in the optical bed for the 

LDV system.  Buckles suspended the entire structure by 1/4 inch 

steel cables in a sling-type design that raised and lowered the 

traverse with a scissors jack.  It was found that this suspension 

design did not provide an even enough lifting force on both sides 

of the cage to prevent binding in the shaft bearings.  As a result 

the optical bed underwent a small amplitude seesaw type motion when 

moved vertically.  The play in the shaft bearings also made the 

traverse susceptable to vibration. 

' The seesaw motion was corrected by supporting the I-beam cage 

and optical bed on two lead screws.  A drawing of the design is shown 

in Figure 4,2. 
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Each lead screw is 8-1/2 inches long, one inch in diameter and 

turns through a 2-1/2 inch diameter brass nut that is attached to 

the cage.  The lead screws are pinned to one inch diameter stainless 

steel shafts which are mounted vertically and parallel to each other 

with a separation distance of 5 feet. 

The shafts are supported by a stainless steel collar and rotate 

freely in flat race thrust bearings (Figure 4.3).  A radial bearing 

is mounted under the thrust bearings to keep the shafts aligned 

vertically.  The entire lower shaft assembly sits on a 3-1/4 in. x 

5-1/4 in. X 1-1/2 in. aluminum block which is attached to a second 

6 in. X 12 in. x 1 in. aluminum block that is bolted to the floor. 

To ensure that the lead screw shafts turn in unison and raise 

the optical bed evenly, they are connected mechanically by a system 

of four bevel gears and a horizontal 5/8 in. steel rod. A 9 in. 

sprocket is mounted on the rod.  This sprocket is turned by a 2 in. 

sprocket on the end of a 4 ft. roller chain.  See Figures 4.4 and 4.5. 

A hand crank is attached to the smaller sprocket. 

The bevel gears on the lead screw shafts and rod have a 4:1 gear 

ratio.  The gear ratio between the two sprockets in also 4:1.  Thus 

a single turn on the hand crank will rotate the lead screw shaft 

l/16th of a revolution.  This rotation will raise or lower the I-beam 

cage and optical bed 0.0125 in. since then are 5 turns per inch on 

the lead screws.  It was found that the smallest distance that the 

bed could accurately be moved was 0.0005 in. 

The rigidness of the lead screw design eliminated most of the 

vertical vibrations inherent in the suspension design. 
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It was also necessary to modify the manner in which the traverse 

was moved in the horizontal direction.  In the design of Buckles [ 9 ] 

the optical bed was moved horizontally on linear bearings with a 

pulley system using thin steel cables. This pulley system did not 

hold the bed stationary.  The bed was free to move a little in the 

horizontal direction because the cables would stretch slightly when 

the heavy bed vibrated. 

The horizontal vibration was substantially reduced by eliminating 

the pulley system and moving the optical bed on a second pair of lead 

screws.  The new horizontal traverse design is shown in Figure 4.6. 

The pair of lead screws are pinned on each side to 1/2 in. stainless 

steel rods that are mounted horizontally and parallel to each other 

on the I-beam cage. As in the case of the vertical lead screws, these 

rods turn in unison because they are connected mechanically by a 

system of 4 bevel gears and a 3/8 in. steel rod.  The lead screws 

turn through 1 in. x 1-1/4 in. x 2 in. brass nuts attached to the 

bed and the rods are rotated by turning a hand crank on a reduction 

gearbox.  The entire horizontal traverse system is geared so that 

a single turn on the hand crank moves the optical bed 0.025 in. 

III.  LDV System and Data Acquisition 

The velocity measurements were obtained using a single-channel 

dual-beam laser-Doppler velocimeter operated in the forward-scatter 

mode.  The LDV system used was identical to that of Buckles [ 9 ] 

except for the receiving optics.  Therefore only a brief description 

of the system and its operation will be given here.  Also, for a 
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complete description of LDV theory,- the reader is referred to a 

report by Adrian [5 ]. 

The LDV system is shown in Figure 4.7.  They system views the 

flowfield from the side of the channel.  It consists of a 15 mW 

Spectra Physics He-Ne laser and TSI Inc. optics and a photomultiplier 

tube.  A single laser beam is split by prisms into two beams in the 

horizontal plane.  The beams are focused by a 250 mm focal-length 

transmitting lens and intersect to form the measurement volume where 

fluid velocity is determined.  Two 2.27:1 beam expansion units were 

placed in series before the transmitting lens to reduce the 

measurement volume dimensions.  The measurement volume, defined by 

-2 
the e  intensity distribution of the illuminating beams, is an 

ellipsoid with axes 3.5 x lo""^ cm, 3.5 x lo"^ cm, and 3.8 x lo"^ cm 

in the streamwlse, normal and traverse directions. 

The receiving optics is a TSI Model 9142-2 polarization 

separator. A schematic of this unit is shown in Figure 4.8.  The 

unit can be used to collect and separate scattered light into two 

polarities that are perpendicular to each other.  Light is collected 

with a 350 mm focal-length lens and focused by a 200 mm lens onto 

a mirror where it is reflected into a polarization splitter.  The 

splitter sends horizontally polarized light to one photomultiplier 

tube and vertically polarized light to a second tube.  The entire 

receiving optics unit is part of a LDV system manufactured by TSI to 

measure two velocity components that are distinguished by their 

polarities.  However, for the experiments in this thesis a single 

component transmitting system was used where all of the scattered 
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light was vertically polarized.  Consequently only one photomultiplier 

tube was used.  The polarization separator was set up in anticipation 

of future two-component LDV measurements. 

The Doppler signals were frequency shifted by 200-500 KHz to 

increase the count rate, lower fringe biasing and to detect negative 

velocities if present.  Pedestal components were removed prior to 

processing with a 100 KHz high-pass filter.  The signal processor was 

a TSI Model 1090 frequency tracker operated on its 500 KHz and 5MHz 

ranges.    ■ . ' 

The water was prepared by filtering out all particles larger than 

3 ym in diameter and adding 0.5 ym white latex paint spheres manu- 

factured by Dow Chemical Co.  The concentration of these seed particles 

was such that on the average only one particle was in the measurement 

volume at any given time.  Under these conditions data rates of 

2000-4000 and 4000-8000 samples per second were achieved at Reynolds 

numbers of 6400 and 38,800 respectively.  The resulting signals from 

the tracker had "high data density" (Adrain [5 ]); i.e. there were 

many velocity samples per Taylor microscale of the flow.  In this 

region of operation the signals could be assumed to be continuous. 

They were filtered at 1 KHz to remove noise and sampled at 80 Hz 

by an 8-bit A/D converter.  Mean velocities and mean root mean square 

fluctuations were calculated by averaging batches of 4000 samples. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

Flat Channel Data 

A.  Friction Factors 

The velocity measurements presented in this thesis are made 

nondimensional with respect to wall parameters.  Velocities are 

*   A 
made dimensionless with flat channel friction velocities, u =/—^ 

/  p ' 

obtained from the flat channel electrochemical shear stress data 

of Thorsness [ 44 ] .  Distances above the wave surface are made dimension- 

less with respect to v/u , where v is the kinematic viscosity.  Figure 

5.1 shows Thorsness' Fanning friction factor data versus a Reynolds 

number. Re , based on the half channel height, h^, and the bulk, 

velocity, U^.  The data are well fitted by the Blasius type equation 

f = 0.0612 ^%^^^ (5.1) 

Equation 5.1 is identical to that obtained by Cohen [ 15 ] for air flow 

in a one inch rectangular channel.  The friction velocity is defined 

as a function of the friction factor according to the following 

equation 

u = U  /T72 ■ , . (5.2) 

The channel calculations are also normalized with wall parameters. 

However, in order to keep the calculations self consistent and' 

independent of the data, the friction velocities used were obtained 
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by applying the Cess profile to a flat channel.  The flat channel 

friction factor-Reynolds number relationship predicted by the Cess 

profile with K = 0.48 and A = 33 is also shown in Figure 5.1.  Good 

agreement with the friction factor data is observed. 

The values of the von Karman constant and the van Driest para- 

meter were selected to give the best fit to equation (5.1). These 

values differ from the generally accepted values of K = 0.41 and 

A = 25. It is believed that these constants can be adjusted freely 

for the Cess profile because they lose some physical meaning due to 

the matching process in the derivation of this equation. 

Values of K  = 0.48 and A = 33 were used for all wavy surface 

channel calculations. 

B. Mean Velocities 

Thorsness [ ^^ ] obtained flat channel velocity profiles at 

several bulk Reynolds numbers. Re, , ranging from 5190 to 29,600. 

Figure 5.2 shows a comparison of Thorsness' data at the extremes 

of this range with Cess profiles using K = 0.48 and A = 33.  Good 

agreement is observed.  A good prediction of flat channel velocity 

profiles with the Cess equation is a prequisite for applying this 

eddy viscosity model to the more complicated flow over wavy surfaces, 

C. Turbulent Intensities 

In order to test the ability of the LDV system to measure 

accurately turbulent intensities, measurements of the streamwise 

intensity,  / u^ /u , were obtained in a flat channel.  Figure 5.3 

shows intensity data at Re = 11,000.  A maximum intensity of 2.7 in 'b 
* 

wall units is observed at y u /v = 14.  This agrees closely with the 
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measurements of Eckelmann and Reichardt [ 18 ], which are also shown 

in Figure 5.3.  In other channel investigations Compte-Bellot [16], 

Clark [ 14 ]. Hussain and Reynolds [ 21 ], and Reischman and Tiederman [ 37 ] 

found maximum intensities ranging from 2.5-3.3 at y^u*/v locations of 
d 

12-15.  The centerline intensity of 1.1 is slightly higher than values 

from the above literature which range from 0.75-1.0.  A possible 

source of the increased intensity is vibrations of the optical traverse 

and test section. 

It should be noted that the literature intensity measurements were 

obtained over a wide range of Reynolds numbers.  However, comparisons 

with the data in Figure 5.3 are valid since both the maximum and 

centerline intensities are relatively insensitive to flowrate when 

normalized with wall parameters. 

A tabulation of the flat channel intensity data may be found in 

Appendix B. '  ■ 

II.  Flow Regime Map     , :"/■ 

Two sets of velocity measurements over waves were taken, one each 

in the linear and nonlinear shear stress response regions discussed 

in Chapter 2. The set of data in the linear region was obtained over 

a wave of steepness 2a^/A = 0.03125 with a dimensionless wavenumber of 

ct^v/u = 0.008 (Re^ = 6400). For the nonlinear set 2a^/A was equal to 

0.05 and a^v/u was equal to 0.00165 (Re^ = 38,800). Figure 5.4 shows 

the location of the two sets of data on the flow regime map. 

The data consist of time averaged velocity profiles and profiles 

of the root mean square value of the fluctuating strearawise intensity. 
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An analysis and discussion of the data and a comparison with the 

turbulence models described in Chapter 3 is given in Chapter 6. 

Ill-  Results for Wave of Steepness 2a /X = 0.03125 

The wave steepness 2a /X = 0.03125 and the wavenumber a v/u* = 

0.008 were chosen for the first set of data because a linear velocity- 

field response was expected under these conditions.  A wave of lower 

steepness would have produced a closer approximation to a linear 

flowfield.  However, the wave of 2a^/X = 0.03125 was used because 

split film measurements of Zilker [ 48 ] indicated that a wave with 

2a^/X = 0.0125 did not cause large enough changes in the velocity 

profiles to be distinguished from a flat plate profile.  A larger 

amplitude wave was not used since separation may have resulted 

(Zilker [48 ]).  The wavenumber a v/u = 0.008 corresponds to the 

lowest steady flowrate that can be obtained with the flow loop. 

Higher flowrates produce a more nonlinear flowfield by increasing 

the dimensionless wave amplitude, a^u /v.  The dimensionless wave 
* 

'd^ 

amplitude is equal to 12.3. Zilker [ 48 ] observed linear shear 

* 
stress responses for a.u /v < 27. 

d 

Measurements of the mean velocity profiles at the ten x /X 
d 

positions are shown in Figures 5.5-5.14.  Each profile was obtained 

by traversing the LDV vertically from near the wave surface to the 

channel centerline.  The closest data to the wave are at v u /v = 2. 
' d 

Closer measurements were not possible due to vibrations of the wave, 

extraneous laser light reflections off the wave surface, and the 

measurement volume diameter of 0.5 wall units.  The channel centerline 
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is about 365 y^u /v units above the average wave height.  Approximately 

twenty measurements were taken within the viscous wall region at each 

x^/X position.  The uncertainties in the distance, y u /v, and the 

* 
velocity, u^/u , are about 0.40 and 0.25 dimensionless units respectively. 

Figure 5.5-5.14 also contain the wavelength averaged profile as a 

reference for observing disturbances about the mean flowfield.  The 

calculation of the average profile is discussed in Chapter 6, Section I.B. 

The most striking feature of these figures is that there is a lag in 

the reaction of the fluid to the wave which increases with increasing 

height. 

Profiles of the streamwise intensity are given in Figures 5.15- 

5.24 compared with the reference wavelength averaged intensity profile. 

These figures show that the outer portion of the viscous wall region 

lags the inner portion in reacting to the wave. A detailed discussion 

of this behavior is given in Chapter 6, Section I.G. 

IV.  Results for Wave of Steepness 2a./X = 0.05 

The conditions for the second set of data, 2a,/X = 0.05 and 
d 

* a^v/u    =  0.00165, were chosen because a highly nonlinear nonseparated 

flowfield was expected for these conditions.  Measurements of this 

flowfield should provide a good test of the nonlinear channel analysis 

for waves of finite amplitude and of turbulence Models C and D . 

These models have not previously been applied to predict the velocity 

field over waves of finite amplitude with nonsenarated flovrs. 

Mean velocity profiles are shown in Figures 5.25-5.34 compared 

with the wavelength averaged profile.  The closest measurement to the 



3 - 

/ 'd    2 - 

1 - 

J. p....^.. p ^,..j..p.p,l , p   ..,—^.., , , , 1  1 T"   r T—ri 1 1 

- 
\ 

- 

- - 

" 

off' V 
- 8 9^ V qX ^o 
- - 

- - 

1       1    1   1  1 1 i 11            1       1    1   i  1 i 1 11 ...      1.     1   .. 1...I   ,1.. I.Li.. 

10" 10 ^d" 10' 10 

Figure 5.15  Streamwise Intensity Measurements, x./X = 0.1, 
2a,/X = 0.03125, Re^ = 6400, 2h^/A =1.0 

d D a 



T 1 I I I I I T 1 1 I I I I T 1 1 1 I I I I 

/ ■^^    ah 
u 

Wavelength Averaged Profile 

I 

J 1 1 I I I I I 1 I   I I I I 1 I I J I I i I I M 

10' 10 ^d" 10' 10 

Figure 5.16 Streamwlse Intensity Measurements, x,/X 
Re,   =  6400,   2h^/A =  1.0 ^ 

b d 

0.2,   2a,/X = 0.03125, 
d 

•vl 



■"      '    '   I  I I I 11 1 1—I   I I I I n T 1—I I I I I 

/ 
,2 

2 - 

10' 

Wavelength Averaged Profile 

o^^8§8 

80 

■J ■  I ' I M I 1 1  ■ I 

10 ^d" 10' 
J 1—I—I  I ■ I ■ 

10 

Figure 5.17  Streamwlse Intensity Measurements, x /A 
Rej^ = 6400. 2h^/A = 1.0 ^ 

0.3. 2a /A = 0.03125. 

^1 
0^ 



T 1 1 1 I I I I I 1 1 1 1 I I I I I 1 1 1 1 I I I I 

Wavelength Averaged Profile 

/ u 
•2 2 

J L J I I I I I I J L J I I « I « i J I I I I I I I 

10 10 ^d" 10' 10 

Figure 5.18  Streamwlse Intensity Measurements, x,/X = 0.4, 2a /A = 0.03125, 
Re^ = 6400, 2h^/X =1.0 ° 

b d 

^ 
^ 



T 1  I 1 1   I  I I I I I I T 1 1 1—I I I I 

Wavelength Averaged Profile 

A 2  - 
u 

■   I  I I I I I I ■  ■ ■ I I t I I 1 1 1—I I I ' I 

10" 10 y^" 10' 10 

Figure 5.19  Streamwise Intensity Measurements, x^/X = 0.5, 2a^/X - 0.03125, 
Re^ = 6400, 2h,/X =1.0 

b d 

00 



T 1 1—I    I   I  I I I 1 1 1—I    I   I  I I I 1 1 1—I    I   I  I I 

oooO^Se 

Wavelength Averaged Profile 

A ,2 
d 

 ■  ' * I 1 1 1    I   I   I  I I 

10 10 
1 

^d" 10 

 '       «     ' I I I I I 

Figure 5.20 Streamwise Intensity Measurements, x,/X = 0.6, 
2aj/X = 0.03125, Re^ = 6400, 2h,/X = 1.0 

d b d 



T 1 1—I I I I I I 1 1 1 1 I I I I I T 1 1—I—I I I I 

Wavelength Averaged Profile 

/ 
,,2 

0 
10 

J L ■  I I I I I i '   ■  i I I I I I J I I I I I   I 

10 
^d" 

10 10" 

Figure 5.21  Streamwise Intensity Measurements, x,/X = 0.7, 
2a^/X = 0.03125, Re^ = 6400, 2h./X =1.0 

d b a 
00 o 



/ 
,2 

0 
10 

1—I—I I I T1 1 1 1 1 I I I I I 

Wavelength Averaged Profile 

T 1 1 1 I I I 

J I I I I I M I J ' » I I I I J I I I I I I I 

10 
^d" 

10 10" 

Figure 5.22 Streamwise Intensity Measurements, x,/X = 0.8, 2a,/X = 0.03125, 
Re^ = 6400, 2hj/X =1.0 

b d 

00 



3 - 

2 - 

/¥ 
u 

1 - 

0 
10 

- 

— r I     1   1   1 1 1 11             1       1     1 ' T "1   1   1 1 1 - I    r    I   1   1 1 1 1 

Wavelength Averaged Profile 

- i < - 

9^§®8 ia8§> "^i - dBT ^i^ ̂
 

• 
Q^ X   : 

- 

1               1          1        1      1     1    1   1   1                           1               1          J_ i..,i.i i.,.j,.L 1     1   1 1 1 111 

10 
^d" 

10 10" 

Figure 5.23 Streamwise Intensity Measurements, x,/X = 0.9, 2a /X = 0.03125, 
Re^ = 6400, 2h,/X =1.0 

b d 00 



T 1 I I I I I 1 1 1 1 I I I I I T 1 1 1 I I I I 

Wavelength Averaged Profile 

/ 
,2 

0 
10 

«   '  « I I I I I ■   I  I I i I I I I    I I I i M 1 

10 ^d" 10 10" 

Figure 5.24 Streamwise Intensity Measurements, x^/X = 1.0, 
2a^/X = 0.03125, Re, = 6400, 2h /X = 1.0 

00 



u 

u 

30 

25 

20 

15 

10 

10 

T 1 I I I I H 1 1—I I I I I H 1 1 1 I I I M| 1 1 1 I I I I I 

Wavelength Averaged Profile 

■  I I I I I il I I I I I M ll I I I I I I I ll I I I I I M l' 

10 
1 

10 10' 
^d" 

10 

Figure 5.25 Mean Velocity Measurements, x,/X 
Re, = 38,800, 2hj/A =1.0' 

b d 

0.1, 2a./A = 0.05, 
a 

00 



30 

25 

20 

"lA   15 
* 

u 

10 

0 
10 

1 1—I  I I 11 ll 1—I—I  I I 11 ll 1—I—I  I I 11 Ij 1—I—I  I I 111 

Wavelength Averaged Profile 

J t I I I I ll I I i I I I III I I ' I I I I ll I   I I I I I I I 

10 
1 

^d" 10 10" 10 

Figure 5.26  Mean Velocity Measurements, x./X 
Re, = 38,800, 2hj/X = 1.0 

D a 

0.2, 2aj/X = 0.05, a 

00 



30 

25 - 

20 - 

15 - 

10 - 

5 - 

T 1—I I I I I H 1 1—I I I I I l| 

Wavelength Averaged Profile 

T 1—I I I I HI 1 1—I I I I I 

t   I  I I I I I I I I I I I I I I I I I I I I I ll 

10 10 
1 *   2 

V   10 10 

J I '  

3 ._4 
10 

Figure 5.27 Mean Velocity Measurements, x /X = 0.3, 2a /X = 0.05, 
Re, = 38,800, 2h./X = 1.0 

b d 

60 
ON 



30 

25 

20 

„  15 
g 
* 

u 

T 1—I I I I I n 1 1—I I I I I n 1 1—I I I I I l| 1 1—I I I I I l_ 

Wavelength Averaged Profile 

10 

0 J I I I t M I I      ■   I ■ I i 11 ii I I I 1111ii 1—I—I 1111r 

10 10 
1 

yn*  10 10' 10 

Figure 5.28 Mean Velocity Measurements, x./X 
Re^ = 38,800, 2h,/X = 1.0 

b a 

0.4, 2a./X = 0.05, a 



: 

u 

30 

25 

20 

15 - 

10 

T 1—I   I   I I I I r 

f 

 M|     »       I—I   I   I I ll| 1 1—I    I   I I II 

Wavelength Averaged Profile ' 

J L ' I I I lit 1 1—I I I Mil  f ■! 

10 10 *  2 
^d"   10 

j—I ■ > I I " 

10* 10 

Figure 5.29 Mean Velocity Measurements. x,/A = 0.5, 2a /A = 0 05 
Re^ = 38,800, 2h^/X = 1.0   ** ^ 

00 
09 



30 T—I 111 m T 1 1 I I I I I T 1—I I I I I H T 1 1 I I I n 

25 

20 

15 

10 

Wavelength Averaged Profile 

0 
lo" 

■        ■     I    I   i I III '        ■     I    i   I I I il I I I    I   I  Mil 1 1 1    I   I  I M" 

10 1 y/io' 10" 10 

Figure 5.30 Mean Velocity Measurements, x,/X 
Re, = 38,000, 2hj/X = 1.0 

b d 

0.6, 2a,/X = 0.05, 
d 

00 



* 

30 

25 

20 

15 

10 

0 

T 1—I I I I I l| 1 1—I I I I I H 1 1—I I I I I l|  1 1—I I I I I I 

Wavelength Averaged Profile 

J L I    I   I  I I ll I I I    I   I  I III I I ■    I   I  I I I I J I i    I   t M I 

10 10 
1 *        2 

VL 10 
V 

10" 10 
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wave surface is y.u /v = 10 and the channel centerline is about 

1830 y.u /v units above the average wave height.  The measurement 

volume diameter was 2.6 wall units.  Approximately fifteen data 

points were obtained within the viscous wall region.  The dimension- 

less wave amplitude, a^u /v, is equal to 95.2.  The uncertainties 

* A 
in y^u /v and u,/u are about 2.0 and 0.4 dimensionless units respec- 

tively.  As in the case of the 2a /X = 0.03125 wave, the reference 

wavelength averaged profile clearly shows that the reaction of the 

outer flow lags that of the inner flow. 

Accurate measurements of the streamwise intensities over the 

0.05 wave could not be obtained due to difficulties with the 

frequency tracker. 

The data for the 2a^/A = 0.03125 and 0.05 waves is tabulated 

in Appendix C. f-     I 
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1 CHAPTER 6 

DISCUSSION OF EXPERIMENTAL RESULTS 

AND COMPARISON WITH THEORY 

In this chapter the velocity measurements presented in the 

previous chapter are analyzed.  When applicable the measurements 

are compared with predictions from the nonlinear channel code using 

*     * 
the turbulence Models C and D developed by Thorsness, Morrisroe 

and Hanratty [ 45 ] and Abrams [ 2 ].  A summary of the major con- 

clusions of this chapter is given in Chapter 7. 

I. Wave of Steepness 2a,/X = 0.03125 

This section discusses the velocity data obtained over the wave 

of steepness 2a^/X = 0.03125.  The data are presented in several 

forms which are designed to show the linearity of the flowfield above 

this wave.  The presentation includes wall stress profiles, wave- 

length averaged velocity profiles, mean velocity profiles, velocity 

responses at constant heights above the wave, profiles of wave- 

induced velocity perturbations and streamwise intensities. 

- 1 ;        ■, . 

A. Wall Stresses 

1 1.  Surface Shear Stress 

1 Zilker [ 48 ] used electrochemical techniques to obtain surface 

shear stress measurements along the 2a./A = 0.03125 wave with the 
d 

same flowrate, Re^ = 6400, as the velocity measurements presented 

in this thesis.  Data for the eighth and ninth wavelengths are shown 

in Figure 6.1 The data were fitted to the following two harmonic 

Fourier series by performing a least squares analysis: 
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Figure 6.1  Shear Stress Response, 2a,/A = 0.03125, 
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(6.1) 

The amplitudes and phases of the harmonics are defined from equation 

(6.1) as .   •« 

T I  = / c + d  , (6.2) d n     n   n ^       ^ 

and 

)-  = tan 
T,n 

-d 

c 
n 

(6.3) 

respectively.  Table 6.1 shows the results of the Fourier fit.  The 

wavelength averaged shear stress over the eighth and ninth waves, 

- /  *2 
^d     ~ "'"' ^^  ""^^ same as would exist if the wave was replaced by 

a flat surface.  The amplitude and phase of the first harmonic are 

hjjlj^/pu  = 0.989 and 9;^ ^ = 50.9°.  The uncertainties in these 

quantities are approximately ±5 percent and ± 5° respectively.  The 

ratio of the amplitude of the second harmonic to the first is 

'^d'2 '^d'l ~ 0.099.  This indicates a borderline linear-nonlinear 

response since Zilker, Cook, and Hanratty [49] noted that an observable 

difference from a sinusoidal variation is obtained when IT.L/IT I - 
d 2  d 1 

0.116.^- V :■ 

The shear stress response predictions of the nonlinear channel 

A       if 
analysis with turbulence Models C and D are also shown in Figure 6.1. 

A summary of a least squares Fourier analysis of these results is 

given in Table 6.1.  Both models predict a linear response with a 



T.l 

* 2 

Data      Model C      Model D 

\T^\^/PU* 0.989       0.7822       0.7919 

50.9       49.8 54.5 

T,/pu 1 0.895 0.893 
a f 

"^d 12^^ I "^d' 1     °'°^^      0.0808       0.0673 

98 

Table 6.1 A Comparison of Surface Shear Stress Measurements 
with Predictions of Nonlinear Channel Analysis, 
2a,/X = 0.03125, Re^ = 6400, 2h,/X = 1.0 d b d 
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wavelength averaged shear stress reduction of about 10 percent. 

The amplitude and phase of the first harmonic for both models are 

within the experimental error of the shear stress measurements. 

2. Surface Pressure 

The behavior of the surface pressure for 2a,/X = 0.03125, 

2hj/X = 1.0, and Re, = 6400 is shown in Figure 6.2, as predicted 

by the nonlinear code with turbulence Models C and D .  These 

discrete profiles were fitted to a Fourier series with two harmonics. 

The amplitudes and phase angles of the first harmonic are shown in 

Table 6.2.  It should be noted that the local pressure drop due to 

the channel, from the upstream crest to each x,/X position, was 

added to the points in Figure 6.2 before the Fourier analysis.  This 

ensured that only the wave-induced pressure was considered. A 

linear pressure drop due to the channel was assumed.  In Table 6.2 

it can be seen that Models C and D predict similar amplitudes and 

phases. No pressure data is available for comparison with the 

calculations. 

3. Drag 

The drag of the wave on the fluid can be determined from the 

distribution of the tangential and normal stresses at the wavy 

surface.  The total horizontal, x., component of the force at the 

surface is given by: 

F 
^d 

(p, sin B - p V u.cos B) dA* (6.2) ,       a a 

where 

dy. 
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Model C       Model D 

IP^I^/PU* 14.38 14.58 

6;^ 1 165.2 163.7 
P.l 1 

'Pdl2^'Pd'l 0.0759 0.0644 

Table 6.2 Surface Pressure Results of Nonlinear 
Channel Analysis, 2a /X = 0.03125, 
Re, = 6400, 2hj/A = ^1.0 

b d 
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is the slope of the wave surface and dA' is an infinitesimal area along 

the surface.  It is convenient to study the components of this force 

by defining a skin friction drag coefficient, C , and a form drag 
s 

coefficient, C , as follows: 
P 

C = - 
s 

pu 

_ 3^ 
*2 X 

p V 0), cos 6 dS , 
a 

(5.4) 

and 

C =^-i 
p    *2 X 

pu 
p^ sin B dS , (6.5) 

where dS is a distance along the wave.  In the transformed coordinates 

these coefficients become. 

s *2    2iT 
pu 

2TT 

P V 0) , X    d£  , 
d   e 

(6.6) 

and 

C    = 
P pu 

*2    2TT 

2TT 

v^y^de (6.7) 

For a flat surface C = 1 and C = 0. 
s        p 

Drag coefficients predicted from the nonlinear channel analysis 

for the wave of steepness 2a,/X = 0.03125 with Re, = 6400 are shown 
a b 

A       it 
in Table 6.3.  It can be seen that with turbulence Models C and D 

there is approximately a 10 percent decrease in the skin friction drag 
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c c 
Turbulence „        s P     c    + C 
Model s        p     C + C     C + C     s   p , ',     s   p     s   p 

C*       0.895    0.190    0.825      0.175      1.09 

D*       0.893    0.212    0.808      0.192      1.11 

measurements of Zllker 

C = 1.0 ± 0.05 s 

Table 6.3 Drag Coefficients, 2a,/X = 0.03125, 

Re, = 6A00, 2h,/X = 1.0 
b a 
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relative to a flat surface. However, the total drag for the wave 

surface increases by about 10 percent due to an increase in form 

drag.  The form drag represents almost 20 percent of the total drag 

for both models. 

Experimentally, Zilker et al. [49] found that C = 1.0 ± 0.05 
s 

for the above wave and flow conditions.  No pressure measurements 

are available to determine the form drag coefficient. 

B.  Wavelength Averaged Mean Velocity 

An average representation of the flowfield over one wavelength 

of the wave with 2a /X = 0.03125 can be obtained by averaging the 

ten velocity profiles in Figures 5.5-5.14.  The resulting wave- 

length averaged velocity profile is shown in Figure 6.3.  The ten 

profiles used to construct this average are equally spaced profiles 

of the strearawise velocity with distances measured vertically from 

the wave surface as shown in Figure 6.4 for the position x,/X = 0.2. 
d 

Predictions of the same type of wavelength averaged profile by the 

it A 
nonlinear channel code with turbulence Models C and D are also 

it ic 
shown in Figure 6.3.  No differences between Model C and D are 

observed.  The wavelength averaged data are slightly higher than the 

theory.  This difference is not believed to be significant because 

it is within the experimental error of the velocity measurements 

and within errors in the friction factor data of Thorsness [ 44 ] 

which were used to normalize the measurements. 

A second type of wavelength averaged velocity profile above 

the wave surface was calculated from the theoretical results.  In 

this case the profiles to be averaged are formed along the eight 
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curvilinear coordinate lines of constant e.  Distances from the wave 

surface are measured along these lines.  All velocities are parallel 

to lines of constant n.  That is, only velocity components in the 

e-direction are considered.  As an example of such a profile. 

Figure 6.5 shows the velocity profile along e =  ■ir/4.  It is believed 

that a profile averaged along such curves is the proper wavelength 

averaged profile to compare with the flat channel profile.  This is 

because profiles along the curvilinear coordinates reflect the 

geometry of the surface in contact with the flow.  The flat channel 

profile is included in Figure 6.3  It was found that the wavelength 

averaged profile along curvilinear coordinates is nearly identical 

to the average profile in Cartesian coordinates.  This is expected 

for waves of small steepness. 

C.  Mean Velocity Profiles 

The mean velocity profiles at the ten x,/X positions are compared 

in Figures 6.6-6.10 with results of the nonlinear channel code using 

*     * 
turbulence Models C and D .  There are no significant differences 

between the two models for a wave with 2a,/X = 0.03125 and Re, = 6400. 
Q b 

Reasonably good agreement between the experimental profiles and the 

models is observed.  The most important result is that Model C , which 

is a straightforward application of the Cess eddy viscosity profile 

for a flat channel, predicts a good first approximation of the velocity 

"k -k 
field over a wave. A shortcoming of both Models C and D is that the 

models predict smaller deviations about the wavelength averaged 

profile than is observed. 
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The calculated velocity profiles were found to be independent 

of the type of distance y' used in the Cess equation. 

D.  Mean Velocity Responses at Constant Heights above Wave 

The entire time-averaged flowfield above the wave can be studied 

by plotting velocities at constant vertical heights above the surface. 

This is shown in Figure 6.11 with constant y,u /v values ranging from 

5 to 300.  It can be seen that the velocity field is perturbed approxi- 

mately according to the shape of the wave.  That is, a near linear 

response is observed with an associated phase and amplitude at each 

y.u /v value. 

The curves in Figure 6.11 were least squares fitted to a two 

harmonic Fourier series to obtain quantitative information about 

the linearity of this flowfield.  The ratio of the amplitudes of 

the second to first harmonics, 1 '^H I? ^ I "d 11' ^^  shown in Figure 6.12 

as a function of distance above the wave surface.  The maximum ratio 

of 0.17 indicates a weakly nonlinear response.  It is suspected that 

this ratio is slightly higher than the true ratio because any 

scatter in the data of Figure 6.11 is interpreted as nonlinearities 

it is 
by the Fourier analysis. Models C and D underpredict the observed 

nonlinearities. 

The amplitudes of the first and second harmonics of the velocity 

response are shown in Figure 6.13. Here it is also clear that the 

if 

first harmonic dominates the second harmonic at all y.u /v values. 

Both amplitudes are zero at the wall due to the no slip condition. 

The amplitude of the first harmonic increases rapidly to a maximum 
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* 
value of 3.6 at y.u /v equal to 9.  This is also the approximate 

location of the maximim nonlinearity.  Figure 6.14 shows the response 

at y.u /v = 9 where it is Fourier fitted to one and two harmonics. 

Above y ,u /v = 9 the amplitude of the first harmonic decreases rapidly 

to about the edge of the viscous wall region and then gradually 

* 
decreases to zero near the center of the channel, y.u /v s 365. 

Disturbances are small far from the wave surface because here the 

fluid cannot "feel" the presence of the wave below it. 

Nonlinearities also become negligible near the edge of the viscous 

wall region.  The velocity response at y.u /M  = 40 is shown in 

Figure 6.15.  Here it is seen that the Fourier fits to one and two 

harmonics are almost indistinguishable. 

*     * 
The amplitude predictions of Models C and D are also shown in 

Figure 6.13.  Both models predict nearly identical first and second 

harmonic amplitudes with the same general shape as the data. How- 

ever, the models significantly underestimate the amplitude observations 

for 4 < y.u /v < 30. 

It should be noted here that there are turbulence models which 

predict larger velocity perturbations about the wavelength average 

■k i< 
than Models C and D . Abrams [ 2 ] used a linear analysis to 

investigate the effect of a quasilaminar model on the flowfield 

over a wave of infinitesimal amplitude in a boundary layer.  A 

quasilaminar model assumes that all wave-induced turbulent quantities 

are zero. The computer code of Abrams was run with quasilaminar, C 

"k k 
and D turbulence models for ot.v/u = 0.008 (equivalent to Re, = 6400) . 
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It was found that the quasilaminar model predicts a maximum wave- 

induced amplitude which is 30 percent and 37 percent higher than 

it it 
Models C and D respectively.  (Profiles of velocity perturbation 

amplitudes calculated from the linear analysis are given in 

Appendix D.)  However, the quasilaminar model was not adapted to 

the nonlinear analysis for two reasons.  First, Thorsness et al. [ 45 ] 

and Abrams and Hanratty [ 4 ] have shown that this model cannot 

predict the surface shear stress over a wide range of flowrates. The 

model is valid only for very large values of the dimensionless wave- 

* 
number, a v/u .  Secondly,  the quasilaminar model predicts only 

perturbations and can strictly be applied only to waves of infinitesimal 

amplitudes for which the wavelength averaged velocity is known. 

The quasilaminar model is mentioned above because the findings 

of Abrams suggest that a very simple model, with smaller wave-induced 

variations of the turbulence outside the near wall region than 

*     * 
Models C and D , may provide a better fit to the velocity field. 

The phase angle of the first harmonic of the velocity response, 

6- -, is shown in Figure 6.16 as a function of y.u /v.     This phase 
u,l d 

angle is the shift of the maximum velocity upstream of the crest. 

The phase angle is a maximum at the wave surface and decreases rapidly 

within the viscous wall region. A drop of about 20° in the phase is 

* 
seen between y,u /v = 2 and 10.  A minimum value of -25° is observed 

at about y.u /v = 50 and the phase tends toward zero far from the 

wall where the influence of the wave on the fluid is not felt. 

* 
A comparison of 9- , predicted from turbulence Models C and 

u, 1 
* 

D is also shown in Figure 6.16.  Good agreement is observed with 
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both models for y.u /v < 20.  Neither model fits the data well outside 

the viscous wall region. However, the data may be in error here. 

It is not possible to determine accurately phase angles in this region 

because scatter in the data becomes comparable to the amplitude of the 

velocity response for large y,u /v. 

E.  Prediction of Surface Shear Stress Response from LDV Measurements 

It is of interest to know whether the LDV data for 2a,/X = 0.03125 

and Re, = 6400 are close enough to the wave surface to obtain the 
b 

surface shear stress response.  This subsection discusses determination 

of the amplitude and phase of the wall shear stress from the velocity 

measurements. 

1   In Figure 6.13 the slope of I u, L versus y,u /v at the wave 

surface is equal to the amplitude of the wave-induced shear stress. 

This quantity, | x, L, can be determined from the velocity data provided 

there are points close enough to the surface to extrapolate linearly. 

Figure 6.17 shows a comparison of the slope obtained by extrapolating 

the data with I T , I, from the electrochemical measurements of Zilker 
d 1 

et al. [ 49 ].  It is found that the velocity data are not close enough 

to the wave surface to obtain the shear stress amplitude. This implies 

that the linear region in the velocity profiles does not extend to 

the closest measurements at y,u /v equal to two.  A flat channel profile, 

* 
by contrast, has a linear region that extends to a y,u /v value of 

five.  The closeness of the wave-induced velocity perturbations to 

the wall indicates that both LDV and electrochemical techniques are 

necessary to study the near wall region.  This point is illustrated 

in Figure 6.18 where mean velocity data at x/A = 0.3 are compared 



4.D 

3.0 - 

Iuji2.0 

1.0 - 

0.0 
0 

1 '. / 

/ 
'         / 

/ 
/ o 

o       o       O   o o O 
o 

■ 

/ / 
/    o 

/ 

* 

/     / 
/     / 

'o 

Limiting Slope from 

• 

/      / 

/    ^ 1    / 
/ ^ 

Electrochemical Measurements * 
of Zllker 

/   / 
/   / 

  — Extrapolated Slope from 

/ /° Velocity Measurements 

/ / 
" 

/ / 
// -■ , 

- // • 

// 1/ 
■     ■ 

. 
—1— 1 

5.0 y^u /v 10.0 15.0 

Figure 6.17  Comparison of Shear Stress Amplitude from Electrochemical 
and Extrapolated Velocity Measurements, 2aj/X = 0,03125, 
Re^ = 6400, 2h,/X =1.0 

b a 

4^ 



125 

O   P  1  -T   r 

* 
V   ®o 

00 

o 
1-4 

. 

*     / m 
u ' \ COD 
iH \ 
0) \ 

*§ \ 
« 

r 
\GO 

4.' 

\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

« \ 
\ 

- 1-t 

o v 

> 

\^ 4J   a, 
\ yOp 

rH   r^ \ \  • 
\ \\ 

m  c ^ v \\ CO    Cfl X <u x; \ u u 
\ V 

a 
a 

a 
OD 

a 

3 

a 
i 

a 

o o sr 

m 
CM 
f-l 
en 
O 
o 
u 

Cfl 
cs 

cn 

d 

c 
o 

•H 

(U 
OS  O 

CO   II 

CO     T3 

S   CM 

0) 

3 
60 

o o 
in 

a 
m 

a 

3    I     3 



126 

with the Cess flat channel profiles and the prediction of Model C . 

* 
Model C , which was shown in Section I.A.I, to provide a good fit 

to the surface shear stress, is linear only to about y,u /v equal to 

one at this position. 

The phase angle of the velocity at the wave surface is equal to 

the phase angle of the shear stress.  The data in Figure 6.16 can be 

extrapolated linearly to the wall to obtain a shear stress phase angle, 

6;^  , of 54 degrees.  See Figure 6.19.  The extrapolated and calculated 

phases are within the experimental error of the electrochemical 

measurements of Zilker et al. Thus for a wave with 2a,/X = 0.03125 
d 

and Re^ = 6400, TDV techniques can be used to measure the phase 

angle, but not the amplitude, of the surface shear stress response. 

F.  Wave-Induced Velocity Perturbations 

The flowfield over a wave surface may be thought of as a wave- 

induced perturbation about the wavelength averaged profile.  Thus 

the flowfield is given as, ' 

"d^^d'^d^ = ^d^^d^ + ^d^^d'^d^ (6-2) 

where u^(x^,y^) is the perturbation and u^(x ,y ) and U (y ) are the 

total and wavelength averaged velocities respectively. Measured 

profiles of u^(x^,y^) are shown in Figures 6.20-6.24.  By presenting 

only the perturbations, rather than the total velocity profiles, 

the effect of the wave on the mean flowfield is isolated.  The 

profiles were obtained by subtracting the experimental wavelength 

averaged profile in Figure 6.3 from the total velocity profiles in 

Figures 5.5-5.14. 
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The profiles of the wave-induced velocity perturbations are 

given in pairs at positions 180° apart along the wave surface. 

Abrams [ 2 ] has shown that for a perfectly linear response the 

perturbations are equal in magnitude and opposite in sign at half 

wavelength intervals.  The data show that to a first approximation 

this characteristic of linear behavior is observed. However, small 

deviations can be seen.  For instance, the magnitude of the 

perturbations at x,/X = 0.3, 0.4, and 0.5 are larger than at the 

corresponding 180° distant positions of x,/X = 0.8, 0.9, and 1.0. 

The fluid in the trough region is moving slower than is expected 

from linea:>- theory. This is not surprising since the conditions 

2a,/X = 0.03125 and Re, = 6400 (a,v/u = 0.008) place this set 
d b d 

of data close to the separated region.  See Figure 3.1. Although 

no instantaneous separation was observed, the flow may be under- 

going "incipient" separation.  The location of this pre-separation 

behavior is consistent with the measurements of Kuzan [ 26 ] which 

show that separation first appears at approximately x,/X =0.4. 

A comparison of the data with predictions from the nonlinear 

*     * 
channel code each using turbulence Models C and D  is also shown in 

Figures 6.20-6.24.  Here the calculated wavelength averaged profiles 

are used as the mean flowfield.  Both models underpredict the 

disturbances in the viscous wall region.  This is expected from 

previous comparisons of the theory with mean velocity profiles 

(Section I.e.) and the results of the Fourier analysis of the velocity 

field (Section I,D.). 
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G.  Streamwise Intensities 

The wavelength averaged profile of the streamwise intensity is 

shown in Figure 6.25.  As with the case of the mean velocities, the 

intensities are averaged at constant heights measured vertically 

above the wave surface.  Intensity measurements obtained over a flat 

surface in the same channel are also shown in Figure 6.25.  A slight 

increase above flat channel intensities is observed in the viscous 

wall region. 

Figure 6.26 gives all ten intensity profiles in Figure 5.15-5.24 

plotted together.  This figure shows the "envelope" of perturbation 

about the wavelength averaged profile.  A iiaximum perturbation of 

±20 percent about the average occurs at y,u /v = 24.  The majority 

of the disturbances are found within the viscous wall region. 

The observed deviations from the wavelength averaged intensity 

profile can be qualitatively explained in terms of pressure gradient 

effects on the turbulence.  Because of the compression of the 

streamlines at the wave crest and the spreading of the streamlines 

at the trough the fluid pressure varies along the wave surface. 

This gives rise to a periodically varying pressure gradient along 

the wave surface that is roughly equal to that predicted by inviscid 

Kelvin-Helmholtz theory.  That is, the pressure gradient is positive 

for 0 ^ X /A ^0.5 and negative for 0.5 - x /X ^1.0.  Experimental 

studies [6,7,22,23,28,29,31] of turbulent boundary layers in slowly 

converging or diverging sections reveal that strong negative 

(favorable) pressure gradients cause a damping of turbulence close 

to the wall, and that positive (adverse) pressure gradients have 
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just the opposite effect.  These observations are confirmed by 

calculations of Finnicum [19] involving simple eddy modeling of the 

viscous wall region with constant pressure gradients.  One might 

look for a similar phenomenon to occur at wave surfaces. However, 

in this case the pressure gradient is varying rapidly in the flow 

direction and its effect might not be as great as would be observed 

for an equilibrium flow because the flow does not adjust 

instantaneously. 

The calculations in Section I.A. indicate that for 2a,/X »= 
d 

0.03125 and Re, = 6400 the pressure field near the wave surface is 

shifted only slightly (~ 15°) downstream.  Thus if the flew were to 

adjust instantaneously to the local pressure gradients, an enhance- 

ment and dampening of turbulence would be observed at approximately 

0.0 ^ x^/X ^ 0.5 and 0.5 ^ x /X ^ 1.0 respectively.  However, lags 

in the reaction of the turbulence to the pressure gradients are 

observed.  Figures 5.15-5.24 show that for 10 < y.u /v < 60 the 

actual positions of enhancement and dampening of the streamwise 

intensity are 0.3 ^ x./X ^ 0.6 and 0.8 ^ x,/X ^ 0.1.  It is also 
a a 
* 

observed for 10 < y ,u /v < 60 that this lag is a function of height 

above the wave surface with the lag increasing with increasing height. 

Turbulence Models C and D do not take into account this effect. 

* * 
Model C does not lag turbulence quantities and Model D uses a 

single lag constant at all heights. 

* 
For y,u /v > 60 the intensities at all positions are approximately 

the same as the wavelength average.  The influence of the wave is 

minimal here because inertial forces dominate the pressure gradient 

forces. 
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* 
An interpretation of the intensity results below y u /v = 10 

is less certain due to scatter in the responses.  However, the data 

suggests that this portion of the Intensity field responds faster 

to the local pressure gradient than the outer viscous wall region. 

It should be noted that the pressure gradients along a wave 

surface are very large. The maximum negative pressure gradient 

predicted by the nonlinear channel code for 2a ./X = 0.03125 and 
d 

Re, = 6400 is about 10 times the value of constant pressure gradients 

observed to cause relaminarization over a flat surface.  Relaminari- 

zation was not observed. Thus an attenuation of the effect of the 

pressure gradients is seen as well as a lag. 

The locations of the local intensity maxima in Figures 5.15- 

5.24 (marked by arrows) can be explained by drawing an analogy 

between the flowfield over a wave and a classical shear layer.  This 

concept was first suggested by Buckles, Adrian and Hanratty [10]. 

The flowfield over a wave is similar to a shear layer because rapidly 

moving fluid from the crests passes over slowly moving fluid in the 

troughs.  Figure 6.27 traces the loci of the intensity maxima over 

two wavelengths.  The initial peak at x,/X = 0.0 becomes the second 
d 

peak at about x /X = 0.6 and then becomes the third peak at about 

x,/X = 1.6. This figure illustrates the "layering" effect of 

previous shear layers as their remnants pass over any given wave. 

A two harmonic Fourier analysis of the intensity measurements 

was performed.  The ratio of the amplitude of the second harmonic 

to the first, ll^l/Il^l, is shown in Figure 6.28.  It can be seen 
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Figure 6.27 Locus of Maximum Intensities, 2a./X = 0.03125, Re^ = 6400, 2h^/X 
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that the intensity response is nearly linear for 10 < y,u /v < 40. 

The results outside this range may be in error because here the 

amplitudes are small and of the same order as the scatter in the data. 

The amplitudes of the first and second harmonics of the intensity 

response are given in Figure 6.30.  The first harmonic is "spike" 

* 
shaped with a maximum at y.u /v = 24.  The second harmonic has a 

maximum at approximately the same height above the wave but is much 

smaller and flatter.  Figure 6.29 shows the intensity response at 

y.u /v = 24 fitted to one and two harmonics.  The amplitude of the 

intensity disturbance is negligible above y,u /v = 60.  The response 

at y.u /v = 60 is given in Figure 6.31. 

The phase shift upstream of the crest of the first harmonic of 

the intensity response is given in Figure 6.32.  The phase varies 

from 222 at y^u /v = 10 to 142° at y u /v = 50.  The maximum 

intensity is in phase with the trough at about y.u /v = 28. 

II. Wave of Steepness 2a,/X = 0.05  i (J   

This section analyzes the velocity measurements for the wave 

of steepness 2a^/X = 0.05 with Re = 38,800.  The results, which 

are presented in the same form as in the previous section, show a 

flowfield with more nonlinear character than found over the 

2a^/A = 0.03125 wave.  The ability of turbulence Models C and D 

to predict this behavior is discussed. 

A. Wall Stresses 

1.  Surface Shear Stress 

The surface shear stress responses predicted by the nonlinear 

channel code with turbulence Models C and D are shown in 
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Figure 6.33.  This figure gives both the discrete grid points and the 

four harmonic Fourier fits of the spectral analysis.  Recall that 

the code uses fitted curves to evaluate derivatives of quantities in 

the flow direction. 

1    Figure 6.33 shows that Models C  and D predict deviations from 

linearity for 2a /X =0.05 and Re = 38,800.  This is expected since 

a.u /v = 95.2.  Results of the code's spectral analysis are given in 

Table 6.4.  Considerable differences between the models are seen in 

the degrees of linearity, in the amplitudes, and in the phases. 

Model D predicts the most nonlinear response with | x | „ / | T , L = 

0.203 as compared to 0.126 for Model C .  The amplitude and phase of the 

*2 
first  harmonics are    T,L/pu      = 0.7027  and  0.5637  and  9-       = 

d 1 T, i 

48.5 and 62.5 for Models C and D respectively.  Both models 

predict a wavelength averaged shear stress that is approximately 

10 percent below that found in a flat channel at the same flowrate. 

This is about the same reduction observed for the 2a,/X = 0.03125 
d 

wave. . 

There are no shear stress data available for comparison with 

the above calculations. However, both models considerably under- 

predict the nonlinearitries since Zilker [48] observed | T | /1 x, L = 

0.317 for 2aj/X = 0.05 with a smaller dimensionless wave amplitude 

* *     * 
of a.u /v = 80.3. Models C and D also underpredict the phase angle 

of the shear stress.  Zilker found that for a fixed flowrate the 

first harmonic of nonseparated nonlinear shear stress responses is 

approximately the same as that obtained over a wave with small 

enough steepness to give a linear response. Abrams and Hanratty [4] 
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* * 
Model C       Model D 

*2 
|T,L/PU 0.7027 0.5637 
'   d '1 

e-^  , 48.5 62.5 
T,l 

* 2 
TJPU 0.880 0.899 

d 

|TJ2/I^dll °-^26 0.203 

TJ3/|TJ^ 0.015 0.053 

Table 6.4 Predictions of First Harmonic of 
Surface Shear Stress Response, 
2a,/X = 0.05, Re, = 38,800, 2h,/X = 1.0 d D d 
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measured a linear response and a phase angle of 79 ± 5° for 

2a^/X = 0.014 and Re^ = 38,800. 

The shape of the Model D* response agrees qualitatively with 

that of all nonlinear shear stress responses observed by Zilker. 

The model exhibits a gradual variation of the wall shear stress 

on the windward side of the wave and a steep variation on the 

leeward side. 

2.  Surface Pressure 

Predictions of the surface pressure by the nonlinear code with 

turbulence Models C* and D* are shown in Figure 6.34.  The results 

of a two harmonic Fourier analysis of these discrete profiles is 

given in Table 6.5.  Both models predict a linear response with 

nearly identical first harmonic amplitudes and phases. No data are 

available for comparison with these calculations. 

3.  Drag 

Drag coefficients predicted by the nonlinear channel analysis 

are shown in Table 6.6.  Both Models C* and D* give approximately 

a 10 percent decrease in the skin friction drag relative to a flat 

surface.  The total drag for the wave surface increases by about 

20 percent due to form drag which represents about 25 percent of the 

total drag for both models. 

B. Wavelength Averaged Mean Velocity 

The experimental wavelength averaged velocity profile over the 

wave with 2a^/X = 0.05 is shown in Figure 6.35.  This profile was 

obtained by averaging the ten profiles in Figures 5.25-5.34 and is 

thus constructed along Cartesian coordinates as discussed in 
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Model C      Model D 

|Pdli/P" 39.49        39.73 

%^l 174.5        174.8 

'Pd'a^'Pd'i      °-i°s      0-106 

Table 6.5  Surface Pressure Results of Nonlinear 
Channel Analysis, 2a,/X = 0.05, 

Re^ = 38,000, 2h^/X = 1.0 

152 
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Turbulence      ^       ^      ^-^   ^^^    C^ + C 
Model s       p      s   p    s   p 

C        0.880    0.315      0.736     0.264     1.19 

D        0.899    0.296      0.752     0.248     1.20 

I Table 6.6 Drag Coefficients, 2a,/X = 0.05, 

Re, = 38,800, 2h,/X = 1.0 
D d 
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Section I.B. and shown in Figure 6.4.  The Cartesian wavelength 

averaged profiles predicted by the nonlinear channel code with 

turbulence Models C and D are also shown in Figure 6.35.  The 

differences between Models C and D are negligible.  The wave- 

length averaged data are higher than the theory.  This difference 

is believed to be slightly greater than the experimental error. 

Predictions by the nonlinear code of wavelength averaged 

profiles formed along the curvilinear coordinates (Figure 6.5) 

were found to be nearly identical to the average profiles in 

Cartesian coordinates.  The Cess flat channel profile is included 

in Figure 6.35. The calculated wavelength averaged profiles are 

significantly lower than the flat channel profile.  The reason for 

this behavior is not known. 

1    All of the wavelength averaged profiles discussed above are 

normalized with flat channel wall parameters. 

I 

C.  Mean Velocity Profiles 

'   The mean velocity profiles for the wave with 2a,/X = 0.05 are 
d 

shown in Figures 6.36-6.40, where they are compared with predictions 

of the nonlinear channel code with turbulence Models C and D . 

Significant differences between the two models are seen for y,u /v < 20, 

* 
In this region Model D predicts smaller perturbations about the mean 

* 
flowfield than Model C .  Both models considerably underestimate the 

measured disturbances at all heights above the wave. 

The steepness of 2a,/X =0.05 was found to be small enough that 

the calculated profiles are independent of the type of distance y' 

used in the Cess equation.  See equation (3.31). 
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'    D•  Mean Velocity Responses at Constant Heights above Wave 

The velocity field at constant vertical heights above the wave 

surface is shown in Figure 6.41.  The heights range from y^u /v = 20.4 

to y.u /v = 1500. Moderate departures from a linear response are 

* 
observed for roughly y,u /v < 100,  Here the velocity responses vary 

gradually on the windward side of the wave and steeply on the leeward 

side.  This is the same shape that Zilker et al. [49] observed for 

nonlinear shear stress responses. 

A two harmonic least squares Fourier analysis was performed on 

the curves in Figure 6.41.  Figure 6.42 shows the ratio of the amplitude 

of the second to first harmonic as a function of distance above the 

wave. The response is observed to be nonlinear (| "JL/I ^^d^l ^ O-^^) 

for y.u /X < 100 with a maximum ratio of 0.21 at y.u /v = 35.  These 

nonlinearities are surprisingly weak when it is considered that the 

* 
dimensionless wave amplitude, a.u /v, of the 2a,/X = 0.05 wave is 

95.2/12.3 = 7.7 times that for the 2a,/X = 0.03125 wave.  The observed 

*     * 
nonlinearities are underpredicted by both Models C and D . 

Amplitudes of the first and second harmonics of the velocity 

response are shown in Figure 6.43. The shape of these profiles is 

similar to that found over the 2a,/X = 0.03125 wave. The maximum 
a 

value of the first harmonic amplitude is 5.6 at y.u /v = 26. 

* 
Figure 6.44 shows the response at y.u /v = 26 where it is fitted to 

one and two harmonics. The amplitude of the second harmonic reaches 

a maximum at approximately y,u /v = 35.  Figure 6.45 shows the linear 

* 
velocity response at y.u /v = 100. 
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Figure 6.43 differs from Figure 6.13 for the wave with 

2a,/X = 0.03125 in that the disturbances for the 0.05 wave extend 
a 

well outside the viscous wall region.  This is consistent with the 

linear theory calculations of Abrams [ 2 ] which predict that the 

penetration of disturbances increases with decreasing dimensionless 

* 
wavenumber, ajV/u . 

a 
1 *     * 
I    The amplitude predictions of Model C and D are also shown 

in Figure 6.43.  Both models predict profiles with the same general 

shape as the data.  The first harmonic responses of the two models 

"k ic it 
are nearly identical for y u /v > 40.  Below y.u /v = 40 Model C 

I if 

gives larger first harmonic amplitudes than Model D .  The second 

harmonic responses are similar for both turbulence models. 

I, *     * 

Models C and D significantly underestimate the amplitude 

* 
observations for y u /v < 100.  The explanation for the "failure" 

of these models is the same as given in Section I.D, for the wave 

with 2a^/X = 0.03125 and Re = 6400.  It is suggested that only a 

very simple model, with small wave-induced variations of the 

turbulence outside the near wall region, will provide a good fit 

to this portion of the velocity field.  Supporting evidence for 

the above statement was obtained by running the linear boundary 

layer program of Abrams [ 2] with quasilaminar, C and D turbu- 

* 
lence models for a^v/u = 0.00165 (equivalent to Re = 38,800). 

It is found that the quasilaminar model predicts a maximum wave- 

induced amplitude which is 41 percent and 42 percent higher than 

*     * 
Models C and D respectively.  However, it should not be forgotte 

that a quasilaminar model cannot predict the near wall region for 
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small dimensionless wavenumbers, a.u /v.    Abrams has shown that for 

linear waves with a.u /v = 0.00165 it is necessary to use a model, 
a 

such as Model D , where turbulence properties are a function of the 

pressure gradient. 

Determination of the amplitude of the shear stress response from 

the LDV measurements in Figure 6.43 is not possible because the closest 

measurements are well outside the viscous sublayer. 

The phase angle of the first harmonic of the velocity response is 

shown in Figure 6.46. A value of 15.8" is observed at the closest 

measurement location of y u /v = 20. The phase angle falls to a 

minimum value of -16.9° at y,u /v = 125 and tends toward zero far 

* 
from the wall.  The accuracy of the phase angles for y^u /v > 400 is 

low because here scatter in the data becomes a significant fraction 

of the response amplitudes.  Prediction of the phase angle by the 

*     * 
nonlinear channel code with turbulence Models C and D are also 

shown in Figure 6.46. As in the case of the 2a,/A = 0.03125 wave, 

neither model fits the data well outside the viscous wall region. 

* 
The measurements approach the calculations at small y^u /v but do not 

extend close enough to the wave surface to test either model in 

the near wall region. Thus obtaining the phase angle of the wall 

shear stress by extrapolating the data to the wall is not possible 

for 2aJ\  = 0.05 and Re, = 38,800.  Electrochemical techniques are 
d b 

necessary the measure the wall shear stress response. 

E.  Wave-Induced Velocity Perturbations 

Measured profiles of the wave-induced velocity perturbations 

about the experimental wavelength averaged profile are shown in 
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Figures 6.47-6.51.  These figures also contain predicted perturbations, 

by the nonlinear channel code with turbulence Models C and D , about 

calculated wavelength averaged profiles.  It should be pointed out 

that in Figures 6.47-6.51 differences between the data and calculations 

are not due to differences in the experimental and calculated wavelength 

averaged profiles as is the case in Figures 6.47-6.51 for the mean 

velocity profiles.  Both models underpredict the disturbances in the 

viscous wall region but have the same general shape as the data. 

Figures 6.47-6.51 clearly show that disturbances penetrate outside 

the viscous wall region. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

This chapter summarizes the goals of this thesis, the approach 

taken to achieve these goals, and the major results which have 

emerged from the experiments and computations. 

I.  Goals and Approach 

The purpose of the experimental effort was to extend previous 

studies of nonseparated flow over wavy surfaces by obtaining detailed 

measurements of the velocity field.  Earlier investigators concen- 

trated on the measurement of the surface shear stress and pressure 

and made only limited velocity measurements.  This study presents 

the first set of velocity data with sufficient measurements to give 

an accurate representation of the spatial variation in the viscous 

wall region, y^u /v < 40.  The viscous wall region is of particular 

interest because the majority of wave-induced disturbances occur 

here and measurements within this region can be used as a test of 

the turbulence models of Thorsness [ 45 ] and Abrams [ 2 ].  Previous 

tests of their models, which are the best to date, have been limited 

to comparisons with surface stress data. 

Two sets of velocity measurements over waves on the bottom wall 

of a channel were obtained at conditions corresponding to flows 

where linear and nonlinear shear stress responses are observed.  The 

conditions were 2a^/A = 0.3125, Re = 6400 and Za^A = 0.05, Re = 38,800 

respectively.  The wavelength of the waves was 2 in. and the ratio of 

the channel height to the wavelength, 2h./A, was equal to one.  The 
d 



measurements were taken with a single-channel dual-beam laser-Doppler 

velocimeter operated in the forward scatter mode. The unique feature 

of the LDV used in this study is an optics system containing two beam 

expanders.  The beam expanders provided a small enough measurement 

volume to perform velocity measurements as close to the wave surface 

* 
as y u /v = 2 and 10 for the waves with 2a,/A = 0.03125 and 0.05 

u d 

respectively.  Fifteen to twenty data points were taken vertically 

within the viscous wall region and the measurements extended to the center 

of the channel.  Good spatial resolution in the streamwise direction 

was achieved by conducting velocity measurements every tenth of a 

wavelength.  Accurate location of the LDV was obtained with a lead 

screw type traversing mechanism which was constructed for this experi- 

ment.  Careful filtering and seeding of the fluid was found to be 

critical for taking accurate LDV measurements. 

'   The primary purpose of the computational effort was to extend the 

linear theory calculations of Thorsness [45 ] and Abrams [ 2 ] by 

developing a nonlinear computer code for predicting the flowfield 

above finite amplitude waves.  The velocity measurements in this thesis 

were obtained over finite amplitude waves where the application of 

linear theory is uncertain.  A secondary goal of the computational 

work was to perform the above calculations for a channel flow rather 

than a boundary layer as did Thorsness and Abrams.  This 

is because all of the wavy surface measurements from this laboratory 

have been conducted in a channel.  The computer code solves the 

nonlinear Reynolds-averaged Navier-Stokes equations using spectral 

methods in the flow direction and finite differences in the vertical 
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direction.  For computational ease the wave surface was transformed 

to a flat surface via a conformal mapping.   An explicit stretching 

in the vertical direction was introduced to resolve the steep 

velocity gradients near the wave and the top wall of the channel. 

Storage requirements were lowered with the use of a sparse matrix 

solver.  The code is a modification of a boundary layer program by 

McLean [ 32 ] . 

Future applications of the nonlinear channel program may 

include the study of wave generation, drag reduction, asymmetric 

waves, and compliant surfaces.  The program was also developed to 

be used as a "tool" for testing new turbulence models. 

11. Results „ _, . 

Mean velocity responses at constant vertical heights above the 

wave of steepness 2a,/X= 0.03125 with Re, = 6400 were Fourier 
Q b 

analyzed.  The degree of linearity of the flowfield, the wavelength 

averaged flowfield, and the amplitudes and phases of the wave- 

induced responses were determined. 

A weakly nonlinear flowfield is observed.  This is consistent 

with the electrochemical shear stress measurements of Zilker [ 43 ] 

which show a borderline linear-nonlinear shear stress response for 

the same flow conditions.  The maximum ratio of the amplitude of 

the second to first harmonics was found to be 0.17 at about y u /v = 

12. Nonlinearities are negligible outside the viscous wall region. 

The wavelength averaged flowfield is observed to be nearly the 

same as that found in a flat channel. 
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The majority of the wave-induced disturbances occur within 

the viscous wall region.  The amplitude of the first harmonic is 

zero at the wave surface and rises sharply to a maximum of 3.6 plus 

units at y^u /v = 9.  This amplitude represents a 46% disturbance 

about the wavelength averaged velocity field.  Above y u /v = 9 

the amplitude of the first harmonic decreases rapidly to about the 

edge of the viscous wall region and then gradually decreases to 

* it 
zero at the center of the channel, y,u /v ~  365.  At y u /v = 40 

d ^d 

and 300 the disturbances about the mean flowfield were about 10% 

and 1% respectively. . 

1    A s<-reamwise sequence of the mean velocity profiles clearly 

shows that the inner flow precedes the outer flow in reacting to 

pressure gradient changes along the wave surface.  The inner flow 

responds more rapidly since the inertia of the fluid is less here 

than in the core.  The phase angle of the first harmonic of the mean 

velocity response is a quantitative measure of these lags.  The phase 

angle was found to vary rapidly in the viscous wall region.  A 

maximum phase angle, with respect to the downstream crest, of 49° is 

observed at y^u /v =2 and phase has a minimum value of -23° at about 

* 
y^u /v = 50 and tends toward zero far from the wall where the 

influence of the wave on the fluid is not felt. 

I  The streamwise turbulent intensity responses over the 2a /X = 
d 

0.3125 wave were also Fourier analyzed.  The wavelength averaged 

profile of the intensity shows a slight increase above flat channel 

intensities. A near linear response is observed for 10 < y u*/v < 40. 

A maximum disturbance of 20% about the wavelength average occurs at 
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^d^ /^ = 24.  The amplitude of the wave-induced variation of the 

intensity is almost zero above y u /v = 60. 

The periodic variation of the turbulent intensity along the 

wave is consistent with constant pressure gradient experiments in 

other laboratories [ 6, 7,22,23,28,29,31].  It has been observed 

that strong negative (favorable) pressure gradients cause a 

dampening of turbulence close to the wall, and that positive pressure 

gradients (adverse) have just the opposite effect.  However, in this 

case the pressure gradient is varying rapidly in the flow direction 

and the flow does not adjust instantaneously as it would for an 

equilibrium flow.  Lags in the reaction of the turbulent intensity 

to the spatially varying pressure gradient are observed, with the 

reaction of the inner flow preceding the outer flow.  The phase 

angle of the intensity response, with respect to the downstream 

crest, is 222  at y^u /v = 10 and 142° at y u /v = 50.  As a 

reference, instantaneous reaction of the fluid corresponds to a 

phase angle of about 270° since the variation of the pressure gradient 

along the wave is roughly that predicted by inviscid Kelvin-Helmholtz 

theory. 

The above observation of the u-intensity lagging in reaction to 

a pressure gradient provides some physical basis for the highly 

empirical Model D . However, a better test of this model would be a 

comparison with uv-intensities. Experiments to measure the Reynolds 

stress with a two-component LDV are currently being designed in this 

laboratory. These measurements will provide a more direct test of 

turbulence models. 



181 

The LDV measurements are close enough to the wave surface to 

extrapolate linearly to obtain the phase angle but not the amplitude 

of the shear stress response.  The extrapolated phase angle of 54° 

agrees with the electrochemical measurements of Zilker [48].  The 

amplitude of the shear stress response could not be obtained because 

the linear region in the velocity profiles does not extend to the 

* 
closest measurements at y.u /v = 2. 

1   The mean velocity responses above the wave of steepness 2a,/X = 

0.05 with Re, = 38,800 were also Fourier analyzed. The responses 
b 

over this wave showed moderate departures from linear behavior for 

* 
y,u /v < 100.  The maximum value of the ratio of the amplitude of 

the second harmonic to first harmonics is 0.21 at about yjU /v = 35. 

The nonlinearities are surprisingly weak when it is considered that 

the dimensionless wave amplitude, a,u /v, of this wave is 7.7 times 

that for the 2a,/X = 0.03125 wave.  The velocity responses varied 

gradually on the windward side of the wave and steeply on the leeward 

side.  This is the same shape that Zilker [48] observed for all 

nonlinear shear stress responses. However, shear stress measurements 

of Zilker under similar conditions showed much greater non- 

linearities at the wave surface than observed above the wave. 

!  As in the case of the 2a /\ = 0.03125 wave, the wavelength 

averaged flowfield was found to be very close to that observed in a 

flat channel. 

i  The shape of the first harmonic amplitude profile is similar 

to that found over the 2a,/X = 0.03125. However, in this case the 
a 

disturbances extend well outside the viscous wall region.  This is 
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consistent with the linear calculations of Abrams [ 2 ] which show 

that the penetration of disturbances increases with decreasing 

* dimensionless wavenumber, a,v/u .  The two sets of data suggest that 
a 

this penetration is given by (a,v/u )(YJU /V) = constant.  A maximum 

* 
amplitude of 5.6 plus units is observed at y,u /v = 26.  By coinci- 

dence, this is also a 46 percent disturbance about the wavelength 

* 
averaged flowfield. Above y,u /v = 26 the disturbances decrease 

rapidly to y ,u /v = 200 and then gradually to the center of the 

* 
channel, y.u /v ~ 1830. 

The phase angle of the first harmonic varied rapidly between 

the wave surface and y.u /v = 100.  A value of 15.8° was observed at 

y,u /v = 20. A minimum value of -16.9° was found at y.u /v = 125 

and the phase angle tended toward zero far from the wall. As found 

for the 2a,/X = 0.03125 wave, the rapid phase changes are a result 
d 

of mean velocity variations in the inner flow preceding the outer 

flow. 

The nonlinear channel calculations were performed with turbulence 

it it 
Models C and D developed by Thorsness [44] and Abrams [2 ]•  Both 

models used the Cess eddy viscosity profile which is an empirical 

equation derived by matching van Driest's wall region law with 

Reichardt's middle law.  The Cess profile was chosen for the computa- 

tions because it gives a good fit of eddy viscosity data in a flat 

channel and provides a smooth transition between the inner and core 

* 
regions.  For Model C the flat channel value of the van Driest 

parameter is used in the Cess equation. However, turbulence 

properties are allowed to vary in the flow direction because the 

eddy viscosity is a function of the local shear stress and turbulent 
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1 
stresses are a function of the local rate of strain.  This model is 

appealing because it is a simple extension of the widely accepted 

* 
Cess equation for a flat channel.  In Model D  the effect of pressure 

gradients on the turbulence is taken into account.  The van Driest 

parameter is used as a scale factor for governing the thickness of 

the viscous wall region.  This parameter is assumed to be a simple 

polynomial function of the pressure gradient with a single lag constant 

used to relax the flow. Model D was investigated because Abrams [ 2] 

has shown that it is necessary to include the effect of pressure 

gradients on the turbulence to predict the surface shear stress. 

Three different types of physical distances from the wave surface 

in the Cess equation were investigated: normal, Cartesian, and 

curvilinear.  It was found that the results are independent of the 

type of distance for waves of steepness 2a,/X < 0.05. 
d 

t  The agreement between the computations and measurements is best 

for the wave of steepness 2a,/X = 0.03125 with Re^ = 6400 and for 
d b 

these conditions the results using turbulence Models C and D are 

very similar. 

Models C and D both predict the observed near linear response 

of the velocity field over the 2a,/X = 0.03125 wave. However, the 

models significantly underpredict the weak nonlinearities found in 

the experimental velocity responses. 

The amplitude and phase of the surface shear stress predicted 

by both models are within the experimental error of the electro- 

chemical measurements of Zilber [48].  Zilker also observed a 

wavelength averaged shear stress which was the same as the flat 
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*    * 
channel value. Models C and D predict a shear stress reduction 

of about 10 percent. 

Turbulence Models C and D predict identical wavelength 

averaged velocity profiles over the 2a^/X = 0.03125 wave that are 

within the experimental error of the wavelength averaged velocity 

data. 

A comparison between the experimental mean velocity profiles 

and the mean profiles from Models C* and D shows reasonably good 

agreement.  Small differences between the two models is observed. 

The most important result for this wave is that Model C*, which is 

an eddy viscosity model developed for a flat channel, predicts a 

good first approximation of the velocity field. However, two.short- 

it it 
comings of Models C and D are observed.  First, both models predict 

smaller disturbances about the wavelength averaged profile than is 

found experimentally.  Secondly, the observed variation of the 

phase angle of the velocity with height above the wave is larger than 

predicted. 

Computations with turbulence Models C and D* were also performed 

for the wave of steepness 2a^/X =0.05 with Re^^ = 38,800.  In general, 

agreement between the calculations and measurements is not as good 

as for the wave of lower steepness. However, the results are still 

semi-quantitative.  Significant differences between the predictions 

*     * 
of Models C and D are observed. 

Models C and D correctly predict a nonlinear response of the 

velocity field. However, both models significantly underestimate 

observed nonlinearities. Model C is particularly poor because this 



model predicts a weakly nonlinear response. The shape of the Model D 

response is qualitatively the same as the data.  That is, the pre- 

dicted velocity responses vary gradually on the windward side of the 

wave and steeply on the leeward side. 

1    As in the case of the 2a_,/X = 0.03125 wave, the wavelength 

averaged velocity profiles predicted by Models C and D are nearly 

identical. However, these profiles are significantly lower than the 

measured wavelength average.  The reason for this difference is not 

known. 

I   The observed amplitude of the first harmonic of the velocity 

response for the wave with Za./X = 0.05 is considerably underpredicted 

*     * 
by both Models C and D .  Linear theory calculations with a quasi- 

laminar turbulence model suggest that larger disturbances about the 

wavelength averaged flowfield are obtained with models predicting 

smaller wave-induced variations of the turbulence than Models C  and 

D . However, Abrams [ 2] has shown that such models cannot predict 

the wall shear stress over a wide range of flowrates.  Furthermore, 

models with small wave-induced variations do not predict strong non- 

linearities. Thus there is an apparent contradiction in producing 

both the large wave-induced disturbances and the large nonlinearities 

which are observed in the data.  It is not known how to "design" a 

turbulence model to resolve this problem. A lag constant in Model D 

that is a function of height above the wave may provide some improve- 

ment.  However, it is suggested that a more fundamental approach such 

as a k-e closure or solution of the unaveraged Navier-Stokes equations 

be investigated. 
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The variation with height of the phase angle of the velocity is 

*     * 
underpredicted by Models C and D . 

In summary, measurements were obtained of the viscous wall region 

over waves with nonseparated flows.  It was found that the behavior 

of both the mean velocity field and the streamwise intensity field 

can be explained in terms of pressure gradient variations induced by 

the wave surface.  It is observed that the outer flow lags the inner 

flow in reacting to the local pressure gradient.  Of particular interest 

is a periodic enhancement and dampening of the streamwise intensity 

which is consistent with experiments for constant pressure gradient 

flows.  A nonlinear computer code was developed to solve for the flow- 

field over finite amplitude waves in a channel.  Two eddy viscosity 

turbulence models were investigated; one designed for a flat channel, 

and one where turbulent stresses are a function of the pressure 

gradient and relaxed with a single lag constant.  Both models give 

semi-quantitative results but underpredict disturbances about the 

wavelength average flowfield, variations in the phase of the velocity, 

and nonlinearities. 
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NOMENCLATURE 

1     ■      - . -   ■■ 

a. Dimensional wave amplitude (cm) 

A       van Driest parameter 

A' Dimensional area along wave surface, 
1 see equation (6.2)  (cm^) 
1 ■. 

A Average van Driest parameter, 
[ see equation (3.32) 
1 

bj Stretching coefficient in equation (3.23) 

b. Coefficients in orthogonal transformation, 
see equations (3.8) and (3.9) 

1 
c^      Coefficients in Fourier series defined by equation (6.1) 

C' Local wall pressure coefficient defined by Sigal 

C Pressure drag coefficient defined in equation (6.5) 

Cg Skin friction drag coefficient defined in equation (6.4) 

d^ Coefficients in Fourier series defined by equation (6.1) 

f       Fanning friction factor 

1 
F^      Dimensional x, component of the total force that the 

d     fluid exerts on the wave (dyne) 

h^      Dimensional half height of channel (cm) 

11^1    Dimensional amplitude of nth harmonic of wave-induced 
streamwise intensity (cm/s) 

J       Jacobian of orthogonal transformation 
defined by equations (3.8) and (3.9) 

k^,k2   Coefficients defined in equation (3.32) 

k^ Lag parameter defined in equation (3.33) 

2 
Pjj      Dimensional time-averaged pressure (dyne/cm ) 

2 
^d crest ^i^^'^sional time-averaged pressure at crest (dyne/cm ) 

IPJJI    Dimensional amplitude of nth harmonic of wave-induced 
surface pressure (dyne/cm^) 
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p      Dimensionless pressure gradient in x, direction 

p      Dimensionless effective pressure gradient defined 
'eff 

M'n 

d 

yd 

by equation (3.54) 

Re      Channel Reynolds number based on bulk velocity and 
half channel height 

R .     Dimensional components of the time-averaged 
■^     turbulent stress tensor (dyne/cm'^) 

S       Dimensional distance along wave surface, 
see equations (6.4) and (6.5)  (cm) 

S .     Dimensional components of the time-averaged rate 
•^ of strain tensor  (1/s) 

u*      Friction velocity for flat surface  (cm/s) 

Uj      Dimensional time-averaged velocity in x^ direction (cm/s) 

ul      Dimensional fluctuating component of turbulent velocity 
in X, direction (cm/s) 

a 

Uj      Dimensional wave-induced velocity in x, direction (cm/s) 
d ^ 

|uj|_   Dimensional amplitude of nth harmonic of wave-induced 
velocity in x, direction (cm/s) 

U, Bulk channel velocity (cm/s) 
D 

U, Dimensional wavelength averaged velocity in x, direction (cm/s) 
d " 

v. Dimensional time-averaged velocity in y, direction (cm/s) 

v' Dimensional fluctuating component of turbulent velocity 
in y, direction (cm/s) 

Xj      Dimensional horizontal Cartesian coordinate  (cm) 
d 

Dimensional vertical Cartesian coordinate  (cm) 

Dimensional normal, Cartesian, or curvilinear distance 
from the wave surface as illustrated in Figure 3.5  (cm) 

y      Dimensional height of channel top wall in Cartesian 
coordinates  (cm) 

z      Unstretched coordinate defined by equation (3.23) 



189 

Greek 

al      Dimensional wavenumber  (cm) 

H 

n.jj 

'n 

Angle between the wave surface and the horizontal, 
see equation (6.3)  (°) 

Fourier coefficients in equations (3.27)-(3.29) 

Dimensional transformed coordinate defined by 
equations (3.8) and (3.9) 

Dimensional height of channel top wall in 
transformed coordinates  (cm) 

9 Phase lag of nth harmonic of wave-induced streamwise 
'^ intensity from downstream crest (°) 

0- Phase lag of nth harmonic of wave-induced surface 
pressure from downstream crest (°) 

9- Phase lag of nth harmonic of wave-induced surface shear 
* stress from downstream crest (°) 

9- Phase lag of nth harmonic of wave-induced velocity 
"* in Xj direction from downstream crest (") 

d 

K   \ von Karman constant 
I 

X I Dimensional wavelength  (cm) 

1 2 V Kinematic viscosity (cm /s) 

I 2 V Turbulent viscosity  (cm /s) 

e 1 Dimensional transformed coordinate defined by 
! equations (3.8) and (3.9) 

3 p Density of fluid  (gm/cm ) 
I 

Tj I Dimensional surface shear stress  (dyne/cm) 
a { 

Tj Dimensional wavelength averaged surface shear stress 
I (dyne/cm) 

|T|     Dimensional amplitude of nth harmonic of wave-induced 
surface shear stress  (dyne/cm2) 

T  !    Dimensional wall shear stress for flat surface w (dyne/cm^) 
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(J) Dimensional dependent variables in equations (3.24)-(3.29) 
which define finite difference and spectral approximations 
(cm^/s) or 1/s) 

2 
ijjj      Dimensional time-averaged stream function (cm /s) 

0),      Dimensional time-averaged vorticity (1/s) 
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COMPUTER PROGRAM 
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TEXT 
PROGRAM MAIN 

C 
IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/PO,P(2600),PS(2600),PN(2600) 

4 ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
COMMON/XYD/PXX(2600),PYY(2600),PXY(2600) 
C0MM0N/WVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

4 ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

& ,ZA(200),ZB(200),Z1S(200),ETA(200) 
COMMON/TRANS/SX(2600),SY{2600),SXX(2600),SXY(2600) 

4 ,SXS(2600),SYS(2600),SXSY(2600) 
COMMON/MAT/DJ(300000),ICI(300000),IRP(3000),MAXA 
C0MM0N/AMAT/ABD(32,32),IPVT(32) 
COMMON/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

4 TYY(2600),TXY(2600),TS{2600),TSS(2600), 
& TW(2600),TWSS(2600),TWNN(2600),TT(2600), 
& EX(2600),AU(32),AS(32) 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),Y0,ZT 

4 ,HS(32),HSS(32),ZERO(32) 
4 ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
COMMON/CDATA/XXX(400) 
COMMON/FRED/RH 
C0MM0N/K0NST/CC1 
COMMON/KUZ/ETAT 
COMMON/TEST1/INDEX 1 
COMMON/BUM/NDUK 
DIMENSION F1(2600),F(2600) 

C** 
WRITE(52,1001) 

1001 FORMATC *»TURBULENT CALCULATION SPECTRAL EQNS 2NTH MODES**' 
4,/,' »• REVISION 12/10/85 MODEL C* OR D»,  »»' 
4,/,' »* USING THE CESS EDDY VISCOSITY PROFILE »*') 
WRITE(52,1005) 

1005 F0RMAT(• THIS PROGRAM IS A MODIFICATION OF THE BOUNDARY 
4 LAYER CODE BY MaEAN TO THE CASE OF CHANNEL FLOW •) 
VmiTE(52,1004) 

1004 FORMATC MODIFIED BY K.A. FREDERICK 4 J.D. KUZAN ',/) 
WRITE(52,1003) 

1003 FORMATC THE DISTANCES USED TO EVALUATE THE EDDY VISCOSITY 
4 ARE ALONG LINES OF CONSTANT XI ') 

C»» 
PI=4.DO*DATAN(1.D0) 
LDA=32 
DEL=1.D-6 
DEL2=DEL+DEL 

C**  GENERATE CONFORMAL MAP 4 COMPUTE JACOBIAN 
C*»  COMPUTE SCALE FACTORS FOR STRETCHING * 
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j    CALL INIT(ST) 
NE=NP1*M 

C**  PARAMETERS FOR SPARSE MATRIX SOLVER 
CHKT=.0001D0 

i    PIVT=.0G01DG 
C**  INITIALIZE DATA FOR FFT 

CALL CINIT(NPI) 
CALL HSET(ST) 

C**  COMPUTE BOUNDARY CONDITIONS 
CALL FLEXBC(F) 

C**  GENERATE INITIAL GUESS FOR STREAMFUNCTION 
CALL GUESS(F) 
INDEX1=0 

C**  START OF NEWTON ITERATION 
100  INDEX1=INDEX1+1 
C**  COMPUTE STREAMFUNCTION DERIVATIVES...VORTICITY & DERIVS ** 

1   CALL PPRIME(FI) 
CALL XYDER 
CALL VORT 
CALL WPRIME(FI) 

C**  COMPUTE EDDY VISCOSITY * 
CALL MIX(F) 
CALL EDDY(F) 

C**  COMPUTE RESIDUAL 
CALL RES(F)' 
DO 250 NI=1,NP1*MP2 

C**  PRINT OUT RESIDUALS 
i  WRITE(54,101)NI,F(NI) 
101 FORMAT(1X,I5,3X,F30.20) 

25a  CONTINUE 
CLOSE(54) 
XA=O.DO 
DO 200 I=1,NP1»MP2 
XB=DABS(F(I)) 

200  IF (XA.LT.XB) XA=XB 
C*»  PRINT OUT MAXIMUM RESIDUAL 

1  WRITE(53,1002)INDEX1,XA 

CLOSE(53) 
1002 FORMATC INDEX1= ',13, ' MAXIMUM RESIDUAL IS:  ',£12.6) 

IF (XA.LT.1.D-6) GOTO 1000 
IF (XA.GT.1.D7) GOTO 5000 
IF (INDEX1.EQ.10) GOTO 1000 
CALL PRESSURE(F) 

C**  COMPUTE JACOBIAN AND SOLVE LINEAR SYSTEM 
C*»  (SPARSE MATRIX SOLVER BY M.A. STADTHERR) 

CALL FDJAC(F,F1) 
!  CALL TRANPR(NE) 

CALL LU1S0L(NE,CHKT,PIVT,F,F1) 
C**  UPDATE STREAMFUNCTION, AT THE INTERIOR POINTS ONLY    »* 

DO 300 I=1,NP1»M 
i  P(I+NP1)=P(I+NP1)-F1(I) 

300  CONTINUE 
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NRQ=(NP1*MP2)-((2*NP1)-1) 
P(NP1*MP2-NP1)=P(NRQ) 

C»*  PRINT OUT STREAMFUNCTION SO THAT PROGRAM CAN BE 
C    RESTARTED IF COMPUTER GOES DOWN 

DO 301 I=1,NP1*MP2 
301  WRITE(56,*) I,P{I) 

CLOSE(56) 
GOTO 100 

C*«  END OF NEWTON ITERATION 
1000 CONTINUE 
C**  OUTPUT RESULTS: NORMAL AND TANGENTIAL STRESSES ,DRAG COEFF, ETC. * 

CALL PRESSURE(F) 
CALL EXIT 

5000 STOP 
END .^-   ■ ■ 
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SUBROUTINE INIT(ST) 
C** 
C**  SUBROUTINE TO GENERATE COORDINATE SCALINGS 
C** 

IMPLICIT REAL*8(A-H,0-Z) 
!    IMPLICIT INTEGER*4(I-N) 

REAL*8 JA,JN1,JS1 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
C0MM0N/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

& ,ZA(200),ZB(200),Z1S{200),ETA(200) 
COMMON/TRANS/SX(2600),SY(2600),SXX(2600),SXY(2600) 

& ,SXS(2600),SYS(2600),SXSY(2600) 
CQMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

& ,HS(32),HSS(32),ZERO(32) 
4 ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 

i   COMMON/FRED/RH 
i   COMMON/KUZ/ETAT 

DIMENSION PSJ(32) 
C** 
C**  INPUT PARAMETERS * 

DATA RK,A,RK1,RKL/0.^8D0,33-D0,-35.D0,1800.D0/ 
DATA RH,RE,C/0.2D0,77.89D0,0.D0/ 
DATA M,YT,BZ,N/59,1.D0,5.0D0,31/ 

C»« 
WRITE(52,1001)A,RK1,RKL 

1001 FORMATC VAN-DRIEST: A=',F5.2,' K1=«,F6.2,' KL=',F7.2) 
WRITE(52,2000)RH 

2000 FORMATC 2A/LAMBDA=',F12.5) 
WRITE(52,2001)RE 

2001 FORMATC REYNOLDS NUMBER:',F10.4) 
WRITE(52,2002)C 

2002 FORMATC C/U»=',F6.3) 
WRITE(52,2003)M 

2003 FORMATC # OF VERT INTERIOR MESH PTS =',I5) 
WRITE(52,2004)YT 

• 
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2004 FORMAT(• 2H/LAMBDAr•,F6.3) 
WRITE(52,2005)BZ 

2005 FORMAT(• VERT. STRETCHING PARAM.=',F5.2) 
WRITE(52,2006) N,RK 

2006 FORMATC # OF HORIZ. INTERIOR MESH PTS =',I4,'V0N KARMAN=',F5.2) 
AMP=PI*RH 
ZT=2.D0*PI*YT 
REI=1.DO/RE 
NP1=N+1 
NP2=NP1+1 
N2=NP2+NP1 
N3=NP1+N2 
MP1=M+1 
MP2=M+2 
DX=2.D0*PI/NP1 

C*«  COMPUTE FOURIER COEFFICIENTS OF CONFORMAL MAP 
CALL WALL(AMP,ZT,YO,PHS,B) 

C*« » 

C**  COMPUTE STRETCHING & VERTICAL SCALE FACTORS 
C»* * 

CALL WHY(Y0,ZT,BZ) 
DO 10 J=0,MP1 
J1=J+1 
Z1H(J1)=Z1(J1)/2.D0 
Z2H(J1)=Z2(J1)/2.D0 
Z3H(J1)=Z3(J1)/2.DO 
ZA(J1)=Z1(J1)*Z1(J1)*Z1(J1)/2.D0 
ZB(J1)=3.D0«Z1(J1)*Z2(J1) 
Z1S(J1)=Z1(J1)*Z1(J1) 

10   CONTINUE 
C»« » 

C»»  JACOBIAN OF TRANSFORMATION • 
C»* » 

NJ=-N 
DO 130 J=0,MP1 
NJ=NJ+NP1 
PSI=-DX 
DO 120 1=0,N 
PSI=PSI+DX 
NI=I+NJ 
XS=1.D0 
XN=O.DO 
XSS=0.DO 
XSNrO.DO 
DO 110 11=1,14 
SN=DSIN(I1*PSI) 
CS=DC0S(I1»PSI) 
CH=DC0SH(I1*(ETAT-ETA(J+1)))/DSINH(I1*ETAT) 
SH=DSINH(I1*(ETAT-ETA(J+1)))/DSINH(I1*ETAT) 
XS=XS+B(I1)»CS»CH 
XN=XN-B(I1)*SN*SH 
XSS=XSS-I1*B(I1)»SN*CH 
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XSN=XSN-11*B(11)*CS*SH 
110  CONTINUE 

I   XJ=1.D0/(XS*XS+XN*XN) 
1   JA(NI)=XJ 

JS1(NI)=-2.D0»XJ*(XS*XSS+XN*XSN) 
JN1(NI)=-2.D0»XJ*(XS*XSN-XN*XSS) 
XJ3=XJ*XJ*XJ 
XA=XS*{3.D0*XN*XN-XS*XS) 

. ;   XB=XN*(3.D0*XS*XS-XN*XN) 
i   SX(NI)=XS*XJ 
I ,  SY(NI)=-XN*XJ 

SXS(NI)=SX(NI)*SX(NI) 
SYS(NI)=SY(NI)*SY(NI) 
SXSY(NI)=SX(NI)«SY(NI) 
SXX(NI)=XJ3*(XSS*XA-XSN»XB) 
SXY(NI)=XJ3*(XSS*XB+XSN*XA) 
CONTINUE 
TERMS FOR MIXING LENGTH 
COMPUTE TANGENTIAL DISTANCES AT SURFACE 
ST=O.DO 
DO 135 1=1,NP1 
ST=ST+1.D0/DSQRT(JA(I)) 
ST=DX*ST/(2.D0*PI) 
SC=RK1/(0.6D0*RE*DSQRT(ST*ST+(RKL/RE)**2)) 
ET(1)=SC 
ETM(1)=1.D0 
DO 150 1=1,N 
S=-0.5D0/DSQRT(JA(1))-0.5D0/DSQRT(JA(I+1)) 
DO 140 K=0,I 
S=S+1.D0/DSQRT(JA(K+1)) 
S=DX*S 
TEE=S-I*DX*ST 
ETM{I+1)=DEXP(-TEE»RE/RKL) 
ET(I+1)=SC/ETM(I+1) 

120 
130 
c»» 

135 

140 

150 
c»* 
C** 
C*» 
C 
c 

CALCULATE Y DISTANCES FOR EDDY VISCOSITY BY GOING 
ALONG COORDINATE OF CONSTANT XI 
(DISCRETE ARC LENGTH CALCULATION) 
DO 186 1=1,NP1 
NN=0 

! SUM=O.DO 
SUM1=0.D0 
PSJ(I)={(I-1)/8.D0)*2.D0*PI 
DO 176 J=0,NP1*MP2-NP1,NP1 
NI=I+J 
NN=NN+1 
DO 90 K=1,14 
A1=DSINH(K»(ETAT-ETA(NN))) 

' A2=DSINH(K*ETAT) 
SUM=SUM+(B(K)/K)*DC0S(K*PSJ(I))»A1/A2 

90 CONTINUE 
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4 
DO 95 KKr1,lH 
A3=DC0SH(KK*(ETAT-ETA(NN))) 
A4=DSINH(KK*ETAT) 
SUM1=SUM1+(B(KK)/KK)*DSIN(KK*PSJ(I))*A3/A4 

95 CONTINUE 
XX=(SUM1+PSJ(I)) 
Y=(ETA(NN)+YO-SUM)-AMP*DCOS(XX) 
IF(J.EQ.0)GOTO 170 
DN(NI)=DN(NI-NP1)+RK*DSQRT((X0LD-XX)**2 + (Y0LD-Y)**2) 
DB{NI)=-(DN(NI)/RK)*RE/A 
IF(NI.GT.NP1*MP2-NP1)THEN 
DMAX=DN(NI) 
END IF 

170 XOLD=XX 
YOLD=Y 
SUM=O.DO 
SUM1=0.D0 

176  CONTINUE 
NSQT=NP1*MP2-NP1 
NSQR=((NP1*MP2-NP1)/2) 
no 172 J=NSQT,NSQR,-NP1 
NI=I+J 
DN(NI)=DMAX-DN(NI) 
DB(NI)=-(DN(NI)/RK)*RE/A 

172    CONTINUE 
186      CONTINUE 

PPITURN 
END 

C*» « 
C»« » 

SUBROUTINE WALL (AMP,ZT,YO,PHS,B) 
C** 
C**  COMPUTE FOURIER COEFFICIENTS OF CONFORMAL MAP 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 

DIMENSION X(15),Y(15),Z(15),B(1),A(5),F(15),IPVT(15),DJ(15,15) 
C*» 

LDJ=15 
N=14 • 

C»*  PARAMETERS FOR A RIGID SINUSOIDAL WALL » 
WRITE(52,1001) 

1001 FORMATC SINUSOIDAL WAVE PROFILE') 
A(1)=AMP 
A(2)=0.D0 
A(3)=0.D0 
A(4)=0.D0 
A(5)=0.D0 
PHS=1.D0 
NP1=N+1 
INDEX=0 
PI=4.D0*DATAN{1.D0) 
XA=PI/NP1 
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C**  INITIAL GUESS 
DO 10 1=1,NP1 
Z(I)=(I-1)*XA 

Id   B(I)=O.DO 
B(1)=-AMP 
YO=O.DO 

C**  COMPUTE RESIDUAL 
20   INDEX=INDEX+1 

1   DO 40 1=1,NP1 
51=0.DO 

I S2=0.D0 
1       DO 30 J=1,N 
I       S1=S1+B(J)*DSIN(J*Z(I))/(J*DTAhfH(J*ZT)) 

30i       S2=S2+B(J)*DC0S(J*Z(I))/J 
i       X(I)=S1+Z(I) 
i       Y(I)=Y0-S2 
1       S1=0.D0 
I      DO 35 11=1,5 

35I       S1=S1+A(I1)*DC0S(I1*X(I)) 
40 I      F(I)=S1-Y(I) 

I      XArO.DO 
DO 50  1=1,NP1 
XB=DABS(F(I)) 

50 IF(XB.GT.XA)XA=XB 
IF (XA.LT.1.D-10) GOTO 1000 
IF (XA.GT.10.D0) GOTO 5000 
IP (IMDEX.GT.10) GOTO 5000 

C**  COMPUTE RESIDUAL 
i  DO 70 1=1,MP1 

S1=0.D0 
DO 55 11=1,5 

55   S1=S1+I1*A(I1)*DSIN(I1«X(I)) 
DO 60 J=1,M 

60 i  DJ(I,J)=(DC0S(J*Z(I))-S1*DSIN(J*Z(I))/DTANH(J*ZT))/J 
70   DJ(I,NP1)=-1.D0 

JOB=0 
CALL DGEFA(DJ,LDJ,NP1,IPVT,INF0) 
CALL DGESL(DJ,LDJ,NP1,IPVT,F,J0B) 

i DO 80 1=1,M 
80 j B(I)=B(I)-F(I) 

' Y0=Y0-F(NP1) 
GOTO 20 

1000 CONTINUE 
RETURN 

5000 WRITE(52,1002) 
1002 FORMATC THE CONFORMAL MAPPING DID NOT CONVERGE') 

1 CALL EXIT 
END 

C** 

C»» 
SUBROUTINE WHY(YO,ZT,BZ) 

IMPLICIT REAL*8(A-H,0-Z) 
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IMPLICIT INTEGER*4(I-N) 
COMMON/CON/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
C0MM0N/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

& ,ZA(200),ZB(200),Z1S(200),ETA(200) 
COMMON/KUZ/ETAT 

C** 
C**  COMPUTE STRETCHING IN THE NORMAL DIRECTION  ' 
C*» 
C*« 
C**  MODIFIED TO STRETCH AT BOTH TOP AND 
C**  BOTTOM WALLS 
C*» 
C** 

DZ=1.D0/MP1 
ETAT=ZT-YO 
C1=DATAN(BZ) 
C2=DATAN(-BZ) 
C3=BZ*ETAT 
C4=BZ**2.D0 
C5=BZ*4.D0 
C6=C1/ETAT 
C7=C6*C5 
ETA(1)=0.D0 
DO 18 J=0,MP1 
Z8=J*DZ 
A1=(1-2.D0»Z8) 
A11=DATAN(-BZ*A1) 
A2=A1»«2.D0 
IF (J.EQ.O) THEN 
ETA(1)=0.D0 - 
GO TO 1 
END IF 
ETA(J+1)=ETAT*((A11-C2)/(2.D0*C1)) 

1    ETA(1)=0.D0 
Z1(J+1 ) = ((1.D0+C4»A2)»C1)/C3 
Z2(J+1)=((C1/ETAT)»(-C5*A1))»Z1(J+1) 
Z3(J+1)=(C7*((-A1»Z2(J+1))+(2.D0*(Z1(J+1)*»2.D0))))/DZ 
Z2(J+1)=Z2(J+1)/DZ 
Z1(J+1)=Z1(J+1)/DZ 

18   CONTINUE 
RETURN 
END 

C*» 
C*» 

SUBROUTINE HSET(ST) 
C»* 
C*»  COMPUTES FACTORS TO TAKE DERIVATES BY FFT » 
C**  COMPUTES FACTORS TO SHIFT PHASE BY FFT * 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
REAL»8 JA,JN1,JS1 
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C«» 

20 

30 

40 

C»» 

c«* 
c»« 

C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 
& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

& ,HS(32),HSS(32),ZERO(32) 
& ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 

PI2=2.D0*PI 
RN=1.D0/NP1 
NH=NP1/2-1 
STS=ST*ST 
RS=(RKL/RE)**2 
DO 20 1=0,NH 
HS(I+1)=RN*I 
HSS(I+1)=-I*I*RN 
SCI=DSQRT((STS+RS)/(STS+I*I*RS)) 
IF (I.EQ.O) SCI=1.D0 
PHI=DATAN{I*RKL/(RE*ST)) 
SHR(I+1)=RN*DC0S(PHI)»SCI 
SHI(I+1)=-RN*DSIN{PHI)*SCI 
DO 30 I=NH+1,N 
K=I-NP1 
HS(I+1)=RN»K 
HSS(I+1)=-K*K*RN 
SCI=DSQRT((STS+RS)/(STS+K*K*RS)) 
PHI=DATAN(K*RKL/(RE*ST)) 
SHR(I+1)=RN*DC0S(PHI)*SCI 
SHI(I+1)=-RN*DSIN(PHI)*SCI 
DO 40 1=1,NP1 
ZER0(I)=0.D0 
RETURN 
END 

SUBROUTINE FLEXBC(F) 

COMPUTES BOUNDARY CONDITIONS 
IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER«4(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/PO,P(2600),PS(2600),PN(2600) 

& ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
C0MM0N/WVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/TRANS/SX(2600),SY(2600),SXX(2600),SXY(2600) 

& ,SXS{2600),SYS(2600),SXSY(2600) 
C0MM0N/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

4 TYY(2600),TXY(2600),TS(2600),TSS(2600), 
ft TW(2600),TWSS(2600),TWNN(2600),TT(2600), 
4 EX(2600),AU(32),AS(32) 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

4 ,HS(32),HSS(32),ZER0(32) 
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& ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
DIMENSION F(1) 

C** 
NJ=1+NP1*MP1 

C**  BOUNDARY CONDIIONS AT WALL 
DO 20 1=0,N 
P(I+1)=G.D0 .. 
PS(I+1)=0.D0 
PSS(I+1)=0.D0 
TT(I+1)=0.D0 
T(I+1)=REI 
TS(I+1)=0.D0 
TSS(I+1)=0.DO 
PN(I+1)=-C/SX(I+1) 
US(I+1)=-JA(I+1)*PN(I+1)*PN(I+1)/2.D0 

C»*  BOUNDARY CONDITIONS AT UPPER BOUNDARY 
NI=I+NJ 
TT(NI)=0.D0 
T(NI)=REI 

C**  THE UPPER B.C.'S ON TS &TSS ARE ACTUALLY SET IN SUBR EDDY 
TS(NI)=O.DO 
TSS(NI)=0.DO 

C     THE FOLLOWING IS CALCULATED IN GUESS 
C 
C    P(NI)=PO 
C 
c  »#«***»**»*****»*««*****«*«*******»** 

PS(NI)=G.DO 
PSS(NI)=O.DO ' 
PN(NI)=O.DO 

20   CONTINUE 
CALL PF{NP1,US,ZER0,1,F(1),F(NP2),1) 
DO 30 1=1,NP1 
US(I)=-HS(I)*F(I+NP1) 

30   F(I)=HS(I)»F(I) 
CALL FP{NP1,US,F,1,US,F,1) 
RETURN 
END 

C»* 
C»* 

SUBROUTINE GUESS(F) 
C 
C**  INITIAL GUESS FOR STREAMFUNCTION 
C 

IMPLICIT REAL»8(A-H,0-Z) 
IMPLICIT INTEGER»4(I-M) 
REAL»8 JA,JM1,JS1 
C0MMON/PVAR/P0,P(2600),PS(2600),PN(2600) 

4 ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 

« 
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COMMON/SCALE/Z1{200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 
& ,ZA(200),ZB(200),Z1S(200),ETA(200) 
COMMON/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

& TYY(2600),TXY(2600),TS(2600),TSS(2600), 
& TW(2600),TWSS(2600),TWNN(2600),TT(2600), 
& EX(2600),AU(32),AS(32) 
COMMON/bfEW/JA(2600) ,JN 1(2600) ,JS1 (2600) ,B( 15) ,YO,ZT 

& ,HS(32),HSS(32),ZERO(32) 
& ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
COMMON/TRANS/SX(2600),SY(2600),SXX(2600),SXY(2600) 

& ,SXS(2600),SYS(2600),SXSY(2600) 
C0MM0N/MIXL/RL(100) 
DIMENSION F(1),PSI(200),TTINIT(200) 

PN(1)=-C/SX(1) 
C USE THE SAME STREAMFUNCTION 
C    AT ALL X POSITIONS 

READ(40,*)(PSI(J),J=1,MP2) 
C    (INITIAL GUESS FOR STREAMFUNCTION MUST BE INPUT. 
C     OBTAIN INITIAL GUESS BY RUNNING FLAT CHANNEL 
C PROGRAM.) 

DO 70 J=1,MP2 
NJ=1+NP1*(J-1) 

•  DO 60 1=0,N 
TT(I+NJ)=TTINIT(J) 

60   P(I+NJ)=PSI(J) 
70   CONTINUE 
C STREAMFUNCTION AT UPPER BOUNDARY (MASS FLOWRATE) 

P0=P(1+NP1*MP1) 
80 CONTINUE 

RETURN 
END 

C** 
C»» 

C*» 
C»» 

SUBROUTINE PPRIME(F) 

COMPUTE STREAMFUNCTION DERIVATIVES 
IMPLICIT REAL»8(A-H,0-Z) 
IMPLICIT INTEGER*i|(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/P0,P(260O),PS(2600),PN(2600) 

& ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

4 ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

& ,ZA(200),ZB(200),Z1S(200),ETA(200) 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

4 ,HS(32),HSS(32),ZERO(32) 
4 ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
DIMENSION F(1) 

C«*  COMPUTE TANGENTIAL (S) DERIVATIVES 
I  NJ=1 
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DO 20 J=1,M , 
NJ=NJ+NP1 
CALL PF(NP1,P(NJ),ZER0,1,F(1),F(NP2),1) 
DO 10 1=0,N 
NI=I+NJ 
PS(NI)=-HS(I+1)*F{I+NP2) 
F(I+N2)=HS(I+1)*F(I+1) 
PSS(NI)=HSS(I+1)*F(I+1) 

10   F(I+^fP2)=HSS(I+1)*F(I+NP2) 
CALL FP(NP1,PS(NJ),F(N2),1,PS(NJ),F(N2),1) 
CALL FP(NP1,PSS(NJ),F(NP2),1,PSS(NJ),F(NP2),1) 

20 CONTINUE 
C**  COMPUTE NORMAL (N) DERIVATIVES AT INTERIOR POINTS 

NJ=1 
DO MO J=1,M 
J1=J+1 
NJ=NJ+NP1 
DO 30 1=0,N 
NI=I+NJ 
NP=NI+NP1 
NPP=NI+NP1+NP1 
NM=NI-NP1 
NMM=NI-NP1-NP1 
PZ=P(NP)-P(NM) 
PZZ=P(NP)-P(NI)-P(NI)+P(NM) 
IF (NMM.LE.O) GO TO 21 
PZZZ=P(NPP)-P(NP)-P(NP)+P(NM)+P(NM)-P(NMM) 
PNNN(NI)=ZA(J1)*PZZZ+ZB(J1)*PZZ+Z3H(J1)*PZ 

21 CONTINUE 
PN(NI)=Z1H(J1)*PZ 
PNN(NI)=Z1S(J1)*PZZ+Z2H(J1)*PZ 
UN=JA(NI)»(PNN(NI)+JN1(NI)»PN(NI)-PSS(NI)-JS1(NI)»PS(NI)) 
UZ(NI)=DABS(UN) 

30   CONTINUE 
40   CONTINUE 
C»*  COMPUTES Y DERIVATIVES AT Z=0,H 

DO 50 1=0,N 
11=1+1 
PB=P(I1+NP1)-PN(I1)/Z1H(1) 
PNN(I1)=Z1S(1)*(P(I1+NP1)+PB)+Z2H(1)*(P(I1+NP1)-PB) 
UN=JA(I1)»(PNN(I1)+JN1(I1)»PN(I1)) 
UZ(I1)=DABS(UN) 
NI=I1+NP1 
NM=I1 
NP=NI+NP1 
NPP=NI+NP1+NP1 
PZ=P(NP)-P(NM) 
PZZ=P(NP)-P(NI)-P(NI)+P(NM) 
PZZZ=P(NPP)-P(NP)-P(NP)+P(NM)+P(NM)-PB 
PNNN(NI)=ZA(2)*PZZZ+ZB(2)*PZZ+Z3H(2)»PZ 

50   CONTINUE 
RETURN 
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END 
C** * 

C** * 
SUBROUTINE XYDER 

C** 
C**  COMPUTE CARTESIAN DERIVATIVES OF STREAMFUNCTION » 

;    IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 

i   COMMON/PVAR/PO,P(2600),PS(2600),PN(2600) 
i  & ,PSS(260O),PNN(26OO),PNNN(26OO),UZ(26OO),US(32) 

COMMON/XYD/PXX (2600), PYY (2600), PXY (2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

I  & ,ZA(200),ZB(200),Z1S(200),ETA(200) 
,   C0MM0N/TRANS/SX(2600),SY(2600),SXX(2600),SXY(2600) 

& ,SXS(2600),SYS(2600),SXSY(2600) 
COMMON/TEST1/INDEX 1 

C** - ' 
DO 20 J=1,M 
NJ=1+NP1*J 

1   J1=J+1 
I   DO 10 1=0,N 

NI=I+NJ 
PSN=Z1H(J1)*(PS(NI+NP1)-PS(NI-NP1)) 
X1=(SXSY(NI)+SXSY(NI))*PSN-SXX(NI)*PS(NI)+SXY(NI)*PN(NI) 

I   PXX{NI)=PSS(NI)*SXS(NI)+PNN(NI)*SYS(NI)-X1 
1  PYY(NI)=PSS(NI)*SYS(NI)+PNN(NI)*SXS(NI)+X1 

PXY(NI)=SXSY(NI)*(PSS(NI)-PNN(NI))+(SXS(NI)-SYS(NI))*PSN 
& +PS(NI)*SXY(NI)+PN(NI)*SXX(NI) 

10   CONTINUE 
20   CONTINUE 

RETURN 
'  END 

C*« 
C** 

SUBROUTINE VORT 
C»» 
C*»  COMPUTE VORTICITY * 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 

I  REAL*8 JA,JN1,JS1 
1  COMMON/PVAR/P0,P(2600),PS(26O0),PN(260O) 
I & ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 

COMMON/WVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),Y0,ZT 

& ,HS(32),HSS(32),ZER0(32) 
& ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 

C»» 
NJ=-M 
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C»* 
c»* 

DO 20 J=0,M 
NJ=NJ+NP1 
DO  10  1=0,N 
NI=I+NJ 

10 W(NI)=-JA(NI)*(PSS(NI)+PNN{NI)) 
20        CONTI^fUE 

RETURN 
END 

SUBROUTINE WPRIME(F) 
C»* 
C**  COMPUTE DERIVATIVES OF THE VORTICITY » 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER»4(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/P0,P(2600),PS(2600),PN(260O) 

4 ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
COMMON/MVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

4. ,RK1,LDA,LDJ,NE,DEL,DEL2 
C0MM0N/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

& ,ZA(200),ZB(200),Z1S(200),ETA(200) 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 
4 ,HS(32),HSS(32),ZERO(32) 
4 ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
DIMENSION F(1) 

C** 
C*»  COMPUTE TANGENTIAL DERIVATIVES 

DO 25 J=0,M ' -^' 
NJ=1+NP1*J 
CALL PF(NP1,W(NJ),ZERO,1,F(1),F(NP2),1) 
DO 10 1=0,N 
NI=I+NJ 
WS(NI)=-HS(I+1)»F(I+NP2) 
F(I+1)=HS(I+1)*F(I+1) 

C»»  COMPUTE NORMAL DERIVATIVES 
IF (NI.LE.8) GO TO 10 
WN(NI)=(Z1H(J+1)»(PSS(NI-NP1)-PSS(NI+NP1))-PNNN(NI))*JA(NI) 

4 +JN1(MI)*W(NI) 
10   CONTINUE 

CALL FP(NP1,WS(NJ),F(1),1,WS(NJ),F(1),1) 
25   CONTINUE 

RETURN 
END 

C*« » 
C** * 

SUBROUTINE MIX(F) 
C»» 
C**  COMPUTE EDDY VISCOSITY BY NEWTONS METHOD * 
C«»  VAN-DRIEST CORRECTION: ** 
C»»  WALL VALUES FOR PRESSURE...LAG EQUATION FOR PRESSURE  »* 
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C*» 
C»* 

c«* 

c** 

10 

1 

20 

30 
c»» 
40 

50 
C»» 

LOCAL VALUES FOR SHEAR STRESS 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/PO,P(2600),PS(2600),PN(2600) 

& ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
CQMMGN/WVAR/W{2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
C0MM0N/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

& ,ZA(200),ZB(200),Z1S(200),ETA(200) 
C0MM0N/AMAT/ABD(32,32),IPVT(32) 
CQMM0N/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

& TYY(2600),TXY(2600),TS(2600),TSS(2600), 
& TW (2600),TWSS(2600),TWNN(2600),IT(2600), 
& EX(2600),AU(32),AS(32) 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

& ,HS(32),HSS(32),ZER0(32) 
i ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
COMMON/BUM/NDUK 
COMMON/NFRED/NC 
C0MM0N/MIXL/RL(100) 
DIMENSION F(1),RES(32),QT(2600) 

INDEX=0 
COMPUTE TWNN FROM MOMENTUM EQN AT Z=0 
DO 10 1=0,N 
11=1+1 
TW(I1)=T(I1)*W(I1) 
CALL PF(NP1,TW,ZER0,1,F(1),F(NP2),1) 
DO 20 1=1,NP1 
TWSS(I)=HSS(I)*F(I) 
F(I)=HSS(I)*F(I+NP1) 
CALL FP(NP1,TWSS,F,1,TWSS,F,1) 
DO 30 1=1,NP1 
TWNN(I)=WS(I)»PN(I)-TWSS(I) 
START OF ITERATION FOR MIXING LENGTH 
INDEX=INDEX+1 
NJ=NP2 
DO 50 1=0,N 
NI=I+NJ 
TT(NI)=RL(NI)»RL(NI)*UZ(NI) 
T(NI)=TT(NI)+REI 
TW(NI)=T(NI)*W(NI) 
COMPUTE UNSHIFTED PRESSURE TERM 
XA=0.DO 
DO 70 1=0,N 
11=1+1 
TM=(TWNN(I1)+2.D0*Z1S(1)*TW(I1)-(Z1S(1)+Z2H(1))*TW(I1+NP1)) 

& /(Z1S(1)-Z2H(1)) 
TN(I1)=Z1H(1)*(TW(I1+NP1)-TM) 
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70   AU(I1)=ET(I1)*(US(I1)-TN(I1)) 
C**  SHIFT THE PRESSURE BY FFT 

CALL PF(NP1,AU,ZER0,1,F(1),F(NP2),1) 
DO 80 1=0,N 
11=1+1 
AS(I1)=SHR(I1)*F(I1)-SHI(I1)*F(I+NP2) 

80 F(I1)=SHR(I1)*F(I+NP2)+SHI(I1)*F(I1) 
CALL FP(NP1,AS,F,1,AS,F,1) 

C**  COMPUTE MODIFIED VAN-DRIEST FACTOR 
DO 81 1=1,NP1 
PR=ETM(I)*AS(I) 

81 AS(I)=1.D0+0.6D0*DTANH(PR) 
C**  COMPUTE THE RESIDUAL 

DO 90 1=0,N 
NI=I+NJ 

C**  COMMENT THE FOLLOWING LINE FOR MODEL D* 
G    AS(I+1)=1.0 

EX(NI)=DB(NI)»DSQRT(T(NI)»UZ(NI))/AS(I+1) 
C    EX(NI)=DB(NI) 
C**  CONSTANT BOUNDARY LAYER THICKNESS EQUAL TO THE HALF 
C    HEIGHT OF A FLAT CHANNEL WITH THE SAME AVERAGE 
C    CROSS SECTION 

DELTA=ZT/2.D0 
RES(NI-NP1)=RL(NI)-DN(NI)*(1.D0-DEXP(EX(NI))) 
XB=DABS(RES(NI-NP1)) 

90   IF (XA.LT.XB) XA=XB 
JF (XAJJE.I.D-II) GOTO 120 
IF (INDEX.GT.100) GOTO 500 
IF (XA.GT.1.D3) GOTO 500 

C**  COMPUTE THE JACOBIAN AND SOLVE 
CALL AJAC(F) 
JOB=0 
CALL DGEFA(ABD,LDA,NP1,IPVT,INF0) 
CALL DGESL(ABD,LDA,NP1,IPVT,RES,J0B) 
DO 110 1=1,NP1 

110  RL(I+NP1)=RL{I+NP1)-RES(I) 
GOTO 40 

C»»  END OF NEWTON ITERATION AT Z=0 
120  CONTINUE 

INDEX=0 
C**  START OF NEWTON FOR EDDY VISCOSITY AT INTERIOR POINTS 
200  INDEX=INDEX+1 

XA=0.D0 
DO 220 J=2,M 
NJ=1+NP1»J 
DO 210 1=0,N 
NI=I+NJ 
T(NI)=TT(NI)+REI 

C»»  COMMENT THE FOLLOWING LINE FOR MODEL D», 
C*»  UNCOMMENT THE LINE FOR MODEL C* 
C    AS(I+1)=1.0 

EX(NI)=DB(NI)*DSQRT(T(NI)»UZ(NI))/AS(I+1) 
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■  IF(J.EQ.MP1/2)EX(NI)=-1000.D0 
IF(J.GT.MP1/2)EX(NI)=DB(NI) 
A1=(2.0*RK*RE*(DN(NI)/RK)/3.0)*»2 
A2=(1.0-0.5*DN(NI)/(RK*DELTA))**2 
A3=(3.0-4.0*DN(NI)/(RK*DELTA)+2.0*(DN(NI)/(RK*DELTA))**2)**2 

1   A4=(1.0-EXP(EX(NI)))*»2 
1   QT(NI)=0.5*(1.0/RE)*SQRT(1.0+A1*A2*A3*A4)-0.5*(1.0/RE) 
I   F(NI)=TT(NI)-QT(NI) 
*   XB=DABS(F(NI)) 

210  IF (XA.LT.XB) XA=XB 
220  CONTINUE 

IF (XA.LT.1.D-11) GOTO 300 
IF (XA.GT.1.D3) GOTO 500 
IF (INDEX.GT.100) GOTO 500 

I   DO 240 J=2,M 
1   NJ=1+NP1*J 
j   DO 230 1=0,N 

NI=I+NJ 
I   Y=DN(NI)/RK 
'   YH=Y/DELTA 

C**  COMMENT THE FOLLOWING LINE FOR MODEL D*, 
C**  UNCOMMENT THE LINE FOR MODEL C* 
C    AS(I+1)=1.0 

'   Z=-{RE*Y/A)*DSQRT(T(NI)*UZ(NI))/AS(I+1) 
IF(J.EQ.MP1/2)Z=-1000.DO 
ZP=(RE*Y*UZ(NI)/(2.D0*A))/AS(I+1) 
ZP=-ZP*(1.D0/DSQRT(T(NI)*UZ(NI))) 
ZZ={1.D0/(2.D0*RE))*»2 
ZZZ=(3.DO-4.D0*YH+2.D0*YH*»2)**2 
ZZZ=ZZZ*(1.DO-0.5D0»YH)*»2 
ZZZrZZZ*(2.D0*K*RE«Y/3.DO)*»2 

!   ZZZ=ZZZ*ZZ 
I   DF=2.D0*ZZZ*(1.D0-DEXP(Z))*(-ZP*DEXP(Z)) 

DF=DF*(1.DO/DSQRT(ZZ+ZZZ»(1.DO-DEXP(Z))**2)) 
1  DF=1.D0-0.5D0*DF 
I   IF(J.GT.MP1/2)DF=1.D0 

TT(NI)=TT(NI)-F(NI)/DF 
230  CONTINUE 
240  CONTINUE 

GOTO 200 
C»»  END OF NEWTON AT INTERIOR POINTS 
C**  COMPUTE OTHER VARIABLES AT THE UPPER BOUNDARY 
300  NJ=1+NP1*MP1 

DO 305 1=0,N 
NI=I+NJ 

!  IF (NDUK.GT.O) THEN 
j  JP=NC+2*NP1 
1  PNN(JP)=2.D0*Z1S(MP2)»(P(JP-NP1)-P(JP)) 

W(JP)=-JA(JP)«PNN{JP) 
GO TO 597 
END IF 
PNN(NI)=-RE/JA(NI) 
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W(NI)=RE 
C*»  Y DERIVATIVE AT Z=1,1-H * 
597  PT=(PNN(NI)+2.D0*Z1S(MP2)*P(NI)-(Z1S(MP2)-Z2H(MP2))*P(NI-NP1)) 

&  /(Z1S(MP2)+Z2H(MP2)) 
NI=NI-NP1 
NP=NI+NP1 
NM=NI-NP1 
NMM=NI-NP1-NP1 
PZ=P(NP)-P(NM) 
PZZ=P(NP)-P(NI)-P(NI)+P(NM) 
PZZZ=PT-P(NP)-P(NP)+P(hfM)+P(NM)-P(NMM) 
PNNN(NI)=ZA(MP1)*PZZZ+ZB(MP1)*PZZ+Z3H(MP1)*PZ 

305  WN(NI)=(Z1H(MP1)*(PSS(NI-NP1)-PSS(NI+NP1))-PNNN(NI))*JA(NI) 
& +JN1(NI)*W(NI) 
RETURN 

500  WRITE(52,1001) 
1001 FORMATC BOMBED OUT COMPUTING EDDY VISCOSITY') 

CALL EXIT 
END 

C** * 
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G«» 
SUBROUTINE AJAC(F) 

C** 
C**  FINITE DIFFERENCE JACOBIAN FOR MIXING LENGTH COMPUTATION 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/P0,P(2600),PS(2600),PN(26O0) 

4 ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
COMMON/WVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/AMAT/ABD(32,32),IPVT(32) 
COMMON/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

& TYY(2600),TXY(2600),TS(2600),TSS(2600), 
j 4 TW(2600),TWSS(2600),TVn«I(2600),TT(2600), 

i EX(2600),AU{32),AS(32) 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

4 ,HS(32),HSS(32),ZERO(32) 
i ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 

COMMON/MIXL/RLdO) 
DIMENSION ASP(32),ASM(32),F(1) 

C«» 
NJ=NP2 
DO 30 1=0,N 
NI0=I+NJ 
RL0=RL(NI0) 
RL(NI0)=RL0+DEL 
T(NI0)=RL(NI0)»RL(NI0)*UZ(NI0)+REI 
TW(NI0)=T(NI0)*W(NI0) 
CALL ASTAR(I,ASP,F) 
RL(NI0)=RL0-DEL 
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C»» 
C»* 

T(NIO)=RL(NIO)*RL(NIO)*UZ(NIO)+REI 
TW(NIO)=T(NIO)*W(NIO) 
CALL ASTAR(I,ASM,F) 
RL(NIO)=RLO 
T(NIO)=RL(NIO)*RL{NIO)*UZ(NIO)+REI >.; 
TW(NIO)=T(NIO)*W(NIO) 
DO 10 11=0,N 
NI=I1+NJ 
DA=(ASP(I1+1)-ASM(I1+1))/DEL2 
ABD(NI-NP1,NI0-NP1)=-DN(NI)*DEXP(EX(NI))*EX(NI)*DA/AS(I1+1) 

10   CONTINUE 
ABD(NI0-NP1,NI0-NP1)=1.DO+DN(NIO)*EX(NIO)*DEXP(EX(NIO))*RL(NIO) 

& »UZ(NI0)/T(NI0)+ABD(NI0-NP1,NI0-NP1) 
30   CONTINUE 

RETURN 
END 

» 

SUBROUTINE ASTAR(I,ASN,F) 
C»* 
C**  COMPUTE NEW PRESSURE CORRECTION FOR MIXING LENGTH JACOBIAN 

IMPLICIT REAL»8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/PO,P{2600),PS(2600),PN(2600) 

& ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

4 ,ZA(200),ZB(200),Z1S(200),ETA(200) 
COMMON/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

i TYY{2600),TXY(2600),TS(260O),TSS(2600), 
& TW(2600),TWSS(2600),TWNN(2600),TT(2600), 
& EX(2600),AU(32),AS(32) 
COMMON/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

& ,HS(32),HSS(32),ZERO(32) 
4 ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
DIMENSION ASN(1),F(1),AUN(32) 

C*» 
DO 10 11=1,NP1 

10   AUN(I1)=AU(I1) 
TM=(TWNN(I+1)+2.D0»Z1S(1)»TW(I+1)-(Z1S(1)+Z2H(1))»TW(I+NP2)) 

4 /(Z1S(1)-Z2H(1)) 
TN(I+1)=Z1H(1)»(TW(I+NP2)-TM) 
AUN(I+1)=ET(I+1)*(US(I+1)-TN(I+1)) 
CALL PF(NP1,AUN,ZER0,1,F(1),F(NP2),1) 
DO 20 11=1,NP1 
ASN(I1)=SHR(I1)»F(I1)-SHI(I1)»F(I1+NP1) 

20   F(I1)=SHR(I1)*F(I1+NP1)+SHI(I1)*F(I1) 
CALL FP(NP1,ASN,F,1,ASN,F,1) 
DO 30 11=1,NP1 
PR=ETM(I1)»ASN(I1) 
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3ci   ASN{I1) = 1.D0+0.6D0*DTANH(PR) 

I   RETURN 
END 

C** 
C** 

SUBROUTINE EDDY(F) 
C** 
C**  COMPUTE DERIATIVES OF EDDY VISCOSITY ' -^f": 

IMPLICIT REAL*8(A-H,0-Z) 
\        IMPLICIT INTEGER*4(I-N) 
1   REAL*8 JA,JN1,JS1 

COMMON/PVAR/PO,P(2600),PS(2600),PN(2600) 
4 ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
COMMON/WVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
C0MM0N/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

& ,ZA(200),ZB(200),Z1S(200),ETA(200) 
C0MM0N/TRANS/SX(2600),SY(2600),SXX(2600),SXY(2600) 

& ,SXS(2600),SYS(2600),SXSY(2600) 
COMMON/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

i TYY(2600),TXY(2600),TS(2600),TSS(2600), 
& TW(2600),TWSS(2600),TWNN(2600),TT(2600), 
4 EX(2600),AU(32),AS(32) 
C0MM0N/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

& ,HS(32),HSS(32),ZERO(32) 
4 ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
DIMENSION F(1) 

C*» 
C**  COMPUTE TW AT INTERIOR POINTS 

DO 10 J=2,MP1 - 
NJ=1+NP1*J 
DO 10 1=0,N 
NI=I+NJ 

10 ' TW(NI)=T(NI)*W(NI) 
C**  COMPUTE TANGENTIAL (S) DERIVATIVES OF T AND TW 

I NJ= 1 
I DO 80 J=1,MP1 
I NJ=NJ+NP1 
I CALL PF(NP1,T(NJ),ZER0,1,F(1),F(NP2),1) 

CALL PF(NP1,TW(NJ),ZERO,1,F(N2),F(N3),1) 
DO 70 1=0,N 
NI=I+NJ 
XA=F(I+NP2) 
TS(NI)=-HS(I+1)»F(I+NP2) 

I IF(NJ.EQ.1+NP1*MP1)TS(NI)=0.D0 
F(I+NP2)=HS(I+1)*F(I+1) 
TSS(NI)=HSS(I+1)*F(I+1) 
IF(NJ.EQ.1+NP1*MP1)TSS(NI)=0.D0 
F(I+1)=HSS(I+1)»XA 
TWSS(NI)=HSS(I+1)»F(I+N2) 

70   F(I+N2)=HSS(I+1)»F(I+N3) 
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CALL FP(NP1,TS(NJ),F(NP2),1,TS(NJ),F(NP2),1) 
CALL FP(NP1,TSS(NJ),F(1),1,TSS(NJ),F{1),1) 
CALL FP(NP1,TWSS(NJ),F(N2),1,TWSS(NJ),F(N2),1) 

80   CONTINUE 
C**  COMPUTE NORMAL (N) DERIVATIVES OF T AND TW 

NJ=1 
DO 100 J=1,M 
NJ=NJ+NP1 
J1=J+1 
DO 90 1=0,N 
NI=I+NJ 
TN(NI)=Z1H(J1)*(T(NI+NP1)-T(NI-NP1)) 
TNN(NI)=Z1S(J1)*(T(NI+NP1)-T(NI)-T(NI)+T(NI-NP1)) 

& +Z2H(J1)*(T(NI+NP1)-T(NI-NP1)) 
CZ=TW(NI+NP1)-TW(NI-NP1) 
CZZ=TW(NI+NP1)-TW(NI)-TW(NI)+TW(NI-NP1) 
TWNN(NI)=Z1S(J1)*CZZ+Z2H(J1)*CZ 

C**  COMPUTE CARTESIAN DERIVATIVES OF EDDY VISCOSITY 
TYX=Z1H(J1)*(TS(NI+NP1)-TS(NI-NP1)) 
X1=(SXSY(NI)+SXSY(NI))*TYX-SXX(NI)*TS(NI)+SXY(NI)*TN(NI) 
TXX(NI)=TSS(NI)*SXS(NI)+TNN(NI)*SYS(NI)-X1 
TYY(NI)=TSS(NI)*SYS(NI)+TNN(NI)*SXS(NI)+X1 

90   TXY(NI)=SXSY(NI)*(TSS(NI)-TNN(NI))+(SXS(NI)-SYS(NI))*TYX 
& +TS(NI)*SXY(NI)+TN(NI)*SXX(NI) 

100  CONTINUE 
RETURN 
END 

C»* 
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C** 
SUBROUTINE RES(F) 

C** 
C»*  COMPUTE THE RESIDUAL AT INTERIOR POINTS 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
REAL*8 JA,JN1,JS1 
C0MM0N/PVAR/P0,P(26G0),PS(2600),PN(2600) 

i ,PSS{2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
COMMON/XYD/PXX(2600),PYY(2600),PXY(2600) 

'   C0MM0N/WVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 

4 TYY(2600),TXY(2600),TS(2600),TSS(2600), 
& TW(2600),TWSS(2600),TWNN(2600),TT(2600), 
& EX(2600),AU(32),AS(32) 
C0MM0N/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

& ,HS(32),HSS(32),ZER0(32) 
& ,DN(2600),DB(2600),SHR(32),SHI(32),ST(32),ETM(32) 

I  COMMON/NFRED/NC 
DIMENSION F(1) 

c*» 
NJ=1 
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DO 20 J=1,M 
NJ=NJ+NP1 
DO 10 1=0,N 
NI=I+NJ 
F(NI-NP1)=WS(NI)*PN(NI)-WN(NI)*PS(NI)-TWSS(NI)-TWNN(NI) 

& -2.D0*(PXX(NI)*TYY(NI)-2.D0*PXY(NI)*TXY(NI) 
& +PYY(NI)*TXX(NI))/JA(NI) 

10   CONTINUE 
20   CONTINUE 

RETURN 
END 

C** 
SUBROUTINE FDJAC(FP,FM) 

C** 
C»»  FINITE DIFFERENCE JACOBIAN: *» 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
COMMON/PVAR/P0,P(2600),PS(2600),PN(2600) 

& ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/MAT/DJ(300000),ICI(300000),IRP(3000),MAXA 
COMMON/TEST1/INDEX1 
COMMON/NFRED/NC 
DIMENSION FP(1),FM(1) 

C**  CENTERED DIFFERENCES AT INTERIOR POINTS 
C    FDJAC FILLS THE MATRIX COLUMN WISE 
C    THE FOLLOWING PARAMETERS ARE USED BY TRANPR AND MATRIX 
C    MAXA IS THE TOTAL NUMBER OF NON-ZERO ENTRIES 
C    L IS THE POSITION NUMBER; L{MAX)=MAXA 
C    IRP POINTS TO THE BEGINNING OF EACH NEW COLUMN 
C    ICI IS THE POSITION VECTOR 
C    DJ IS THE MATRIX ELEMENT 
C    ON EXIT FROM TRANPR, THE ELEMENTS ARE ROW ORIENTED 

MAXA=0 
L=0 
IRP(1)=1 
DO 300 J=1,M 
NJ0=1+NP1*J 
DO 200 1=0,N 
NIO=I+NJO 
NC=NI0-NP1 
POLD=P(NIO) 
P(NIO)=POLD+DEL 
CALL STARDER(J,FP) 
P(NIO)=POLD-DEL 
CALL STARDER(J,FM) 
P(NIO)=POLD 
DO 130 11=1,NE 
Q=(FP(I1)-FM(I1))/DEL2 
IF (Q.NE.O.DO) THEN 
L=L+1 
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MAXA=MAXA+1 
DJ(L)=Q 
ICI(L)=I1 
END IF 

130 CONTINUE 
WRITE(58,*) MAXA 
IRP(NC+1)=L+1 

200  CONTINUE 
300  CONTINUE 

WRITE(52,*)MAXA 
CLOSE(58) 
RETURN 
END 

C*» 
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C»* » 
SUBROUTINE STARDER(J,F) 

C«* 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
COMMON/NFRED/NC 
COMMON/BUM/NDUK 
DIMENSION F(1) 

C** 
IF(NC.GE.NP1*M-N)NDUK=10 
CALL PPRIME(F) 
CALL XYDER 
CALL VORT 
CALL WPRIME(F) 
CALL MIX(F) 
CALL EDDY(F) 
CALL RES(F) 
NDUK=0 
RETURN 
END 

C*» 
C*» 

SUBROUTINE PRESSURE{F) 
c«» 
C**  OUTPUT: NORMAL AND TANGENTIAL STRESSES, DRAG COEFFICIENTS, ETC. * 

IMPLICIT REAL*8(A-H,0-Z) 
IMPLICIT INTEGER*4(I-N) 
REAL*8 JA,JN1,JS1 
COMMON/PVAR/PO,P(2600),PS(2600),PN(2600) 

& ,PSS(2600),PNN(2600),PNNN(2600),UZ(2600),US(32) 
COMMON/XYD/PXX(2600),PYY(2600),PXY(2600) 
COMMON/WVAR/W(2600),WS(2600),WN(2600) 
C0MM0N/C0N/N,M,NP1,NP2,N2,N3,MP1,MP2,RE,REI,RK,A,C,PI,DX,RKL 

& ,RK1,LDA,LDJ,NE,DEL,DEL2 
C0MM0N/SCALE/Z1(200),Z2(200),Z3(200),Z1H(200),Z2H(200),Z3H(200) 

4 ,ZA(200),ZB(200),Z1S(200),ETA(200) 
COMMON/TRANS/SX(2600),SY(2600),SXX(2600),SXY(2600) 

& ,SXS(2600),SYS(2600),SXSY(2600) 



223 

C0MM0N/EDVIS/T(2600),TN(2600),TNN(2600),TXX(2600), 
& TYY(2600),TXY(2600),TS(2600),TSS(2600), 
& TW(2600),TWSS(2600),TWNN(2600),TT(2600), 
i EX(2600),AU(32),AS(32) 
C0MM0N/NEW/JA(2600),JN1(2600),JS1(2600),B(15),YO,ZT 

&   ,HS(32),HSS(32),ZERO(32) 
& ,DN(2600),DB(2600),SHR(32),SHI(32),ET(32),ETM(32) 
COMMON/FRED/RH 
COMMON/KUZ/ETAT 
DIMENSION X(200),Y(200),PR(200),SIG(200),STR(200),F(1),PSJ(20) 

C 
C**  COMPUTE PHYSICAL COORDINATES OF WAVY SURFACE 

DO 110 1=0,NP1 
11=1+1 
PSI=I*DX 
X(I1)=PSI 

1   Y(I1)=Y0 
I   DO 100 K=1,14 

X(I1)=X(I1)+B(K)*DSIN(K*PSI)/(K*DTANH(K*ETAT)) 
100 Y(I1)=Y(I1)-B(K)*DC0S(K*PSI)/K 
110 X(I1)=X(I1)/(2.D0*PI) 
C** COMPUTE NORMAL DERIVATIVE OF TW AT WALL 
C** TN HERE IS THE NORMAL DERIVATIVE OF TW 
C** FIRST COMPUTE BY FINITE (FORWARD) DIFFERENCES 

DO 200 1=1,NP1 
200 TN(I)=Z1H(1)*(-3.DO*TW(I)+4.D0*TW(I+NP1)-TW(I+NP1+NP1)) 

WRITE(52,1002) 
1002 FORMATC TWN FROM FORWARD DIFFERENCES') 

WRITE(52,1001)(TN(I),1=1,NP1) 
1001 F0RMAT(8(2X,F12.6)) 
C»«  THEN COMPUTE BY USING THE MOMENTUM EQN AT THE WALL 

CALL PF(NP1,TW,ZERO,1,TWSS,TWNN,1) 
i   DO 120 1=1,NP1 
'   TWSS(I)=HSS(I)*TWSS(I) 

120  TWNN(I)=HSS(I)*TWNN(I) 
CALL PF(NP1,TWSS,TWNN,1,TWSS,TWNN.I) 
DO 130 1=1,NP1 
TWNN(I)=WS(I)*PN(I)-TWSS(I) 
TM=(TWNN(I)+2.D0»Z1S(1)»TW(I)-(Z1S(1)+Z2H(1))»TW(I+NP1)) 

'  4 /(Z1S(1)-Z2H(1)) 
130  TN(I)=Z1H(1)»(TW(I+NP1)-TM) 

WRITE(52,1003) 
1003 FORMATC TWN AT Z=0 FROM EQUATION:') 

WRITE(52,1001)(TN(I),I=1,NP1) 
C»*  WS HERE IS THE CROSS TERM PSIXY 

DO 140 1=1,N-1 
140  WS{I+1)=(PN(I+2)-PN(I))/(2.D0»DX) 

WS(1)=(PN(2)-PN(NP1))/(2.D0*DX) 
1  WS(NP1)=(PN(1)-PN(M))/(2.D0»DX) 

C**  PRESSURE AND SHEAR DRAG COEFFICIENTS 
CP=0.D0 

I  CS=0.D0 
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DO 310 1=0,N 
11=1+1 
CP=CP+Y(I1)*(TN(I1)-US(I1)) 

310  CS=CS-TW(I1)*SX(I1)/JA(I1) 
CP=CP/NP1 
CS=CS/NP1 
WRITE(52,1005)CS+CP 
WRITE(52,1006)CS,CS/(CS+CP) 
WRITE(52,1007)CP,CP/(CS+CP) 

1005 FORMATC THE TOTAL DRAG AT THE SURFACE IS: ',F10.7) 
1006 FORMATC SHEAR DRAG COEFFICIENT ',F10.7,'  NORMALIZED: ' ,F10.7) 
1007 FORMATC PRESSURE DRAG COEFFICIENT: •,F10.7,'  NORMALIZED ' 

& ,F10.7) 
C**  COMPUTE PRESSURE AT THE WAVY SURFACE • 

XA=JA(1)*PN(1)*PN(1) 
DO 420 1=0,N 
11=1+1 
PR(I1)=-(TN(1)+TN(I1))/2.D0 
DO 400 K=0,I 

400  PR(I1)=PR(I1)+TN(K+1) 
PR(I1)=(XA-JA{I1)»PN(I1)*PN(I1))/2.D0-DX*PR(I1) 
3IG(I1)=JA(I1)*{PNN(I1)+JN1(I1)*PN(I1))/RE 

420  STR(I1)=-PR(I1)-JA(I1)*(2.D0*WS(I1)+PN(I1)»JS1(I1))/RE 
C**  COMPUTE TERMS AT THE ENDPOINT:  X=LAMDA • 
C**  COMPUTE AMPLITUDE AND PHASE OF VARIATIONS OF PRESSURE AND SHEAR 

PR(NP2)=0.D0 
TAVE=O.DO 
S1=0.D0 1 
S2=0.D0 
S3=0.D0 
S4=0.D0 
SP1=0.D0 
SP2=0.D0 
DO 500 K=0,N 
XS=SX(K+1)/JA(K+1) 
S1=S1-SIG(K+1)*DSIN(2.D0*PI»X(K+1))»XS 
S2=S2+SIG(K+1)*DC0S(2.D0*PI»X(K+1))*XS 
S3=S3-SIG(K+1)*DSIN(4.D0*PI»X(K+1))»XS 
S4=S4+SIG(K+1)»DC0S(4.D0*PI»X(K+1))»XS 
SP1=SP1-PR(K+1)*DSIN(2.D0*PI*X(K+1))»XS 
SP2=SP2+PR(K+1)»DC0S(2.D0*PI*X(K+1))*XS 
TAVE=TAVE+SIG(K+1) 

500  PR(NP2)=PR(NP2)+TN(K+1) 
PR(NP2)=-DX»PR(NP2) 
TAVE=TAVE/NP1 
SAVE=2.D0*DSQRT(S1*S1+S2*S2)/NP1 
S2AVE=2.DO*DSQRT(S3*S3+S4*S4)/NP1 
PAVE=2.DO»DSQRT{SP1*SP1+SP2*SP2)/NP1 
TPH=DATAN2(S1,S2) 
TPR=DATAN2(SP1,SP2) 
TPH=180.D0»TPH/PI 
TPR=180.D0»TPR/PI 
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W(NP2)=W(1) 
SIG{NP2)=SIG(1) 
STR(NP2)=STR(1)+PR(1)-PR(NP2) 
WRITE(52,3000) 

I    DO 430 1=1,NP2 
430  WRITE(52,4000)X(I),W(I),PR(I),SIG(I),STR(I),SIG(I)/TAVE 

WRITE{52,1008)TAVE,SAVE,S2AVE 
WRITE(52,1009)TPH,TPR,PAVE 

1008 FORMAT!' THE AVERAGE STRESS AT THE SURFACE IS: ',F12.7 
& ,' ENERGY IN FUNDAMENTAL:  •,F12.7,' SECOND HARMONIC:  ',F12.7) 

1009 FORMAT(' THE PHASE OF THE WALL STRESS IS: ',F12.7 
& ,' WALL PRESSURE:  •,F12.7,' WALL PRES AMP:  •,F12.7) 

3000 F0RMAT(6X,'X COORDINATE',10X,'VORTICITY',1IX,'PRESSURE', 
& 7X,'TANGENTIAL STRESS',6X,'NORMAL STRESS',9X,'T/<T>') 

4000 F0RMAT(6(4X,E16.8)) 
C** 
C** 
C**  ALL OF THE FOLLOWING LINES HAVE BEEN ADDED TO THE 
C**  ORIGINAL MCLEAN PROGRAM 
C** 

WRITE(52,6002)Y0,ZT 
6002 FORMATC//' Y0=',F10.5,' ZT=',F10.5//) 

j   DO 50 1=1,15 
WRITE(52,6003)B(I) 

6003 FORMAT(F20.10) 
50 CONTINUE 

APLUS=RH*PI*RE 
NN=0 
DO 80 1=1,NP1 
SUM=O.DO 
SUMIrO.DO 
SUM2=0.D0 
PSJ{I)=((I-1)/FL0AT(NP1))*2.D0«PI 
DO 70 J=0,NP1*MP2-NP1,NP1 
NN=NN+1 
DO 90 K=1,14 

1   A1=DSINH(K*(ETAT-ETA(NN))) 
!   A2=DSINH(K*ETAT) 

SUM=SUM+(B(K)/K)»DC0S{K*PSJ(I))*A1/A2 
90 CONTINUE 

DO 95 KK=1,14 
A3=DC0SH(KK*(ETAT-ETA(NN))) 
A4=DSINH(KK*ETAT) 
SUM1=SUM1+(B(KK)/KK)»DSIN(KK*PSJ(I))*A3/A4 
SUM2=SUM2+(B(KK)/KK)*DC0S(KK*PSJ(I))»A3/A4 

95 CONTINUE 
XX=(SUM1+PSJ(I))/(2.D0«PI) 

I  DNDY=1.D0/(1.D0+SUM2) 
YPCART=RE»(ETA(NN)+YO-SUM) 
FACTOR=APLUS»DCOS(2.DO*PI*XX) 
YPSURF=YPCART-FACTOR 

C**  CALCULATE THE VELOCITY IN CARTESIAN COORDINATES 
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PY=DNDY*PN(I+J)+SY{I+J)*PS(I+J) 
WRITE(52,7000)PSJ{I),XX,ETA(NN),YPSURF,PY,DNDY,PN(I+J), 

& SY(I+J),PS(I+J) 
7000 FORMAT(9F12.5) 

SUM=O.DO 
SUM1=0.D0 
SUM2=0.D0 

70 CONTINUE 
NN=0 

80 CONTINUE 
C**  CALCULATE THE SURFACE STRESSES IN PLUS UNITS 
C    (MAGNITUDE,REAL PART,IMAGINARY PART) 

PMAGrPAVE/APLUS 
PRE=-PMAG/DSQRT((DTAN(TPR*PI/180.D0))**2+1.D0) 
PIM=PRE*DTAN(TPR*PI/180.D0) 
TMAG=SAVE/APLUS 
TR=TMAG/DSQRT((DTAN(TPH*PI/l80.DO))**2+1.DO) 
TI=TR*DTAN(TPH*PI/180.D0) 
WRITE(52,7001)APLUS,PMAG,PRE,PIM,TMAG,TR,TI 

7001 FORMAT(///7F15.8) 
CL0SE(52) 
RETURN 
END 
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APPENDIX B 

TABULATED FLAT CHANNEL 

INTENSITY MEASUREMENTS 
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4.25496 1.49553 
4.25496 1.48892 
4.25496 1.56770 
4.25496 1.41903 
6.38245 2.10770 
6.38245 2.14275 
6.38245 2.12518 
8.08445 2.30673 
8.08445 2.38107 
8.08445 2.32637 
10.63741 2.56469 
K). 63741 2.48156 
10.63741 2.50131 
12.33942 2.63251 
12.33942 2.63251 
12.33942 2.65867 
14.89237 2.68927 
14.89237 2.63024 
14.89237 2.75493 
17.01986 2.63685 
17.01986 2.61059 
17.01986 2.66746 
21.70030 2.61276 
21.70030 2.50999 
21.70030 2.57999 

25.95526 2.54287 
25.95526 2.52757 
25.95526 2.55817 

29.35927 2.37228 
29.35927 2.42697 
34.03971 2.37662 
34.03971 2.37445 
38.29468 2.24987 
38.29468 2.35046 
42.54964 2.21709 
42.54964 2.26517 
51.91062 2.19300 
51.91062 2.17770 
68.07952 2.21926 
68.07952 2.12962 
85.09938 2.00938 
85.09938 1.97650 
127.64912 1.91313 
127.64912 1.90217 

170.19876 1.84975 
170.19876 1.89131 
212.74840 1.78409 
212.74840 1.79723 
255.29814 1.76228 
255.29814 1.77324 
297.84778 1.56325 
297.84778 1.59169 

340.39752 1.55674 
340.39752 1.54144 
382.94717 1.42337 
382.94717 1.47806 
425.49689 1.37529 
425.49689 1.34686 
468.04654 1.35554 
468.04654 1.31843 
510.59628 1.22445 
510.59628 1.20914 
553.14594 1.18940 
553.14594 1.16758 
595.69562 1.16314 
595.69562 1.16314 
638.24530 1.10855 
680.79492 1.10855 
723.34454 1.12819 

Table B.l Flat Channel Intensity Data, Re, = 11,000 
b 
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APPENDIX C 

TABULATED VELOCITY MEASUREMENTS OVER WAVES 

2ayx = 0.03125 2a^/X = 0.05 

H 6370 38,840 

U^(cin/s) 24.6 147.4 

u  (cm/s) 1.44 6.88 

v(cin Is) 0.009316 0.009155 

h^(cm) 2.413 2.413 
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* 
u d 

* 
u h 

^d  V ^d V * 
u 

* 
u 

1. 946 2.361 38.884 15,267 1. 946 2. 383 48.604 15.457 2. 335 3 185 48.604 15.598 2. 335 3 138 48.604 15.620 2. 724 3.493 58.325 16.047 2. 724 3. 446 58.325 16.259 3.113 4.036 58.325 16.000 3. 113 4 248 58.325 16.259 3. 113 4. 176 58.325 16 022 3. 501 4. 554 77.765 16.777 3. 501 4. 554 77.765 16 824 3. 501 4, 625 97.206 17 320 3. 890 5. 025 97.206 17.367 3. 890 5. 025 97.206 17. 414 3. 890 4. 956 116.647 17.744 4. 279 5. 617 116.647 17.816 4. 279 5. 474 116.647 17.793 4. 279 5. 592 116.647 17 910 4. 668 5. 898 116.647 17 744 4. 668 5.898 136.088 18.312 4. 668 5.947 136.088 18 171 5. 445 6 606 136.088 18.358 5. 445 6. 678 136.088 18.287 5. 445 6. 631 155.529 18 689 6. 223 7. 149 155.529 18.452 6. 223 7. 220 155.529 18.664 7. 001 8. 306 194.411 19 256 7. 001 8. 165 194.411 19 160 7. 778 8.637 233.292 19. 681 7. 778 8.920 233.292 19 681 7. 778 8. 708 272.174 20 058 8.556 9.298 272.174 20 152 8. 556 9. 510 311.056 20 389 9. 722 10.242 311.056 20 364 9. 722 10.430 349.937 20 246 11. 667 
11.667 

11.328 
11.421 

349.937 20.246 
11.667 11.350 
13.611 12.248 
13.611 12.248 
15.555 12.860 
15.555 12.907 
19.443 13.780 
19.443 13.711 
23.331 14.466 
23.331 14.394 
27.219 14.843 
27.219 14.819 
31.107 14.843 
31.107 14,772 
31 107 14.937 
31.107 15.127 
38.884 15.267 

Table C.l Time-Averaged Velocity Data, xd/X = 0.1, 
2a,/X = 0.03125, cx,v/u* = 0.008 
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I 
I 

p 
I 
I 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

^d V 

1. 977 
1. 977 
2. 372 
2. 372 
2. 768 
2. 768 
3. 163 
3. 163 
3. 163 
3. 163 
3. 559 
3. 559 
3. 955 
3. 955 
4. 350 
4 350 
4. 746 
4. 746 
5. 537 
5. 537 
5. 537 
5. 537 
6. 328 
6. 328 
7. 119 
7. 119 
7 910 
7 910 
8 702 
8 702 
9 888 
9 888 

11 866 
11 866 
13 . 844 
13 . 844 
15 .822 
15 822 
17 .800 
17 800 
17 800 
17 800 
19 . 778 
19 .778 
19 .778 
23 , 734 
23 .734 
27 . 690 
27 690 
31 . 646 
31 . 646 
3S 1. 55T 
3S 1.557 

Tabl« C.2 

» _d 

u 

463 
417 
699 
722 
431 
336 
548 
453 
643 

2. 548 
2. 785 
2. 619 
3. 138 

326 
445 
516 
823 
846 
365 
413 
648 
696 
404 
238 

5. 899 
6. 064 

347 
347 
055 
962 
118 
093 
698 
581 

10.549 
10.595 

3. 
3. 
3. 
3. 
3. 
4. 
4. 
4. 
4. 
5. 
5. 

6. 
6. 
7. 
6. 
8. 
8. 
9. 
9. 

11 
11 
11 
12. 
12. 
12. 
12. 
12. 
12. 
13. 
13. 
14. 
14 
14. 
14. 
14. 
15. 

515 
846 
963 
388 
083 
105 
766 
836 
648 
546 
687 
087 
087 
560 
512 
984 
102 

u 
y d  V 

39. 557 
49. 447 
49. 447 
49. 447 
59. 337 
59. 337 
79. 116 
79. 116 
79. 116 
98. 895 
98. 895 

118. 675 
118. 675 
138. 454 
138. 454 
138. 454 
158 234 
158 234 
197 792 
197 792 
237 351 
237 351 
237 351 
276 . 910 
276 . 910 
316 .469 
316 . 469 
316 . 469 
356 . 027 
356 . 027 
356 027 

_d 
* 

u 

14. 843 
15. 433 
15. 504 
15. 362 
15. 882 
15. 975 
16. 565 
16. 518 
16. 472 
17. 108 
17. 084 
17. 650 
17. 816 
18. 006 
18. 006 
18. 028 
18 311 
18 382 
18 996 
19 067 
19 681 
19 657 
19 610 
19 . 940 
19 . 940 
20 . 105 
20 . 081 
20 .247 
20 . 198 
20 . 105 
20 .247 

Time-Averaged Velocity_^Data,   x^/X = 0. 
2aJX = 0.03125,   ct,v/u" = 0.008 

2, 

 ,-.•■.. .><^- 
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„ u "d u ^ 
^d  V * 

u ^d  V ■k 
u 

1. 979 0 354 17. 990 9. 628 
1. 979 0 472 19. 991 10.525 
1.979 0 425 19. 991 10.525 
2. 379 0 449 19. 991 10.547 
2. 379 0 472 23. 994 11.798 
2. 780 0 992 23. 994 11.563 
2. 780 0 992 27. 996 12.625 
3. 180 180 27. 996 12.696 
3. 180 038 31. 999 13.356 
3. 180 180 31. 999 12.979 
3. 180 109 31. 999 13.143 
3.580 204 40. 004 13.969 
3. 580 510 40. 004 13.947 
3. 580 368 50. Oil 14.702 
3. 980 463   ^ 50. Oil 14.536 
3. 980 651 50. Oil 14.819 
3, 980 581 50. Oil 14.677 
3. 980 629 50. Oil 14.631 
4. 381 700 60. 017 15.078 
4. 381 676 60. 017 14.914 
4. 381 722 60. 017 15.007 
4. 781 959 60. 017 15.102 
4. 781 2 076 80. 031 15.786 
4. 781 2 030 80. 031 15.904 
4. 781 2 123 80. 031 15.810 
5. 582 2 525 100. 044 16.612 
5. 582 2 406 100. 044 16.494 
5. 582 2 406 120. 057 17.085 
6. 382 2 950 120. 057 17.132 
6. 382 2 738 120. 057 17.132 
6.382  y 2 831 120. 057 17.108 
7. 183 3 280 140. 070 17.699 
7. 183 3 398 140. 070 17.508 
7. 983 3 893 160. 083 17,982 
7. 983 3. 847 160. 083 18.123 
8. 784 4. 484 160. 083 18.287 
8. 784 4. 247 200. 109 18.830 
8.784 4 436 200. 109 18.712 
8. 784 4. 272 240. 136 19.445 
9. 985 4. 956 240. 136 19.421 
9 985 5. 332 280. 162 19. 704 
9. 985 5 002 280. 162 19.870 
9. 985 5. 332 320 188 19 963 
11.986 6. 348 320. 188 20,080 
11.986 6 299 320. 188 20 058 
13.987 7 953 320. 188 20,129 
13.987 7. 457 320. 188 20,129 
13.987 7. 174 360 214 20,175 
13.987 7 411 360. 214 20.175 
13.987 7. 669 
15 988 8. 613 
15.988 8. 495 
17.990 9. 721 

Table C.3 Time-Averaged Velocity Data, X(j/X = 0.3, 
2a,/X = 0.03125, a ,v/u*= 0.008 a a 



233 

* 
u ■^d 

* 
u ^d 

^d  V * 
u 

^d  V * 
u 

1.959 0 472 48.886 14.159 
1. 959 0 518 48.886 14.088 
2. 350 0 591 58.663 14.466 
2. 350 0 684 58.663 14.607 
2.741 0 778 58.663 14. 441 
2. 741 0 873 78.216 15.385 
3. 132 0 920 78.216 15.315 
3. 132 0 990 97.769 16.117 
3. 523 226 97.769 15.906 
3.523 250 117.322 16.777 
3.914 321 117.322 16.730 
3. 914 321 136.875 17.297 
4. 305 581 136.875 17.132 
4. 305 557 156.428 17. 769 
4. 305 486 156.428 17.698 
4.696 746 156.428 17.674 
4. 696 652 175.982 18.170 
4. 696 557 175.982 18.194 
5. 478 2 053 175.982 18.311 
5.478 2 218 195.535 18.501 
5. 478 1 934 195.535 18.430 
6. 261 2 430 234.641 19.160 
6.261 2 501 234.641 19.209 
6. 261 2 408 273.747 19.727 
7.043 2 880 273.747 19.727 
7.043 2 880 312. 853 20.Oil 
7.825 3 092 312.853 19.963 
7.825 3 116 351.959 20.128 
8.607 3 870 351.959 20.153 
8. 607 3 823 391.065 20.128 
9.780 4 483 391.065 20.223 
9.780 4. 318 391.065 20.082 
11.736 5 286 
11.736 5. 332 
13.691 6. 254 
13.691 6. 088 
13.691 6. 254 
15.646 6. 913 
15 646 6 891 
15.646 7 149 
17.602 8. 071 
17 602 8 117 
19 557 8 825 
19.557 8 920 
19.557 8 825 
23.467 9 863 

'        23.467 10. 053 
27.378 10. 832 
27.378 11. 067 
31 289 12. 199 
31.289 12. 247 
39.110 13. 238 
39. 110 13. 286 

Table C.4 Time-Averaged Velocity Data, x'd/X = 0.4, 
2a^/X = 0.03125, a,v/u* = 0.008 



234 

2. 
2 
2 
2 

3 
3. 
3. 
3. 
3. 

^d V 

1. 983 
1. 983 
1. 983 

383 
383 
383 

_   383 
2. 783 
2. 783 
3. 184 

184 
184 
584 
584 
584 

3. 584 
3. 984 
3. 984 
3. 984 
3. 984 
4. 384 

384 
785 
785 
585 
585 
585 
386 
386 
186 

7. 186 
7. 987 
7. 987 
7. 987 
8. 787 
8. 787 
9. 988 
9. 988 
9. 988 

989 
989 

4. 
4, 
4. 
5. 
5. 
5. 
6. 
6. 
7. 

11 
11 
13.991 
13.991 
15.992 
15.992 
15.992 
19.995 
19.995 
23.997 
23.997 
23.997 
28.000 
28.000 

d 
* 

u 

0. 520 
0. 566 
0. 566 
0. 709 
0. 803 
0. 803 
0. 803 

132 
156 
274 
274 
345 
415 
509 
652 
581 
676 
840 
864 
628 

2'. 029 
2. 029 
2. 384 
2. 218 
2. 525 
2. 689 
2 573 
3 163 
3 069 
3 681 
3 562 
3 988 
3 751 
3 799 
4 247 
4 319 
5 074 
4 837 
4 955 
5 804 
5 852 
6 583 
6 348 
6 . 890 
7 . 361 
7 .315 
7 . 951 
8 . 024 
9 . 298 
9 . 180 
9 . 439 

10 . 029 
10 . 288 

^d  V * 
u 

32. 003 11. 066 
32. 003 11. 044 
40. 008 12. 082 
40. 008 12. 224 
50. 014 13. 286 
50. 014 13. 380 
60. 021 13. 946 
60. 021 14. 065 
80. 034 14. 749 
80. 034 14. 749 

100. 047 15. 598 
100. 047 15. 528 
120. 061 16. 188 
120. 061 16. 164 
120. 061 16. 306 
140. 074 16. 896 
140. 074 16. 848 
140. 074 16 754 
160. 087 17 250 
160 087 17 274 
160 087 17 320 
200 113 18 147 
200 113 18 217 
200 113 18 217 
240 139 18 972 
240 139 18 901 
280 165 19 327 
280 165 19 373 
320 192 19 845 
320 192 19 845 
360 218 19 917 
360 218 19 . 799 
360 . 218 19 . 963 

Table  C.5    Time-Averdged Velocity Data,   x^/X  - 0.5, 
■ -* = 0.008 laj\ = 0.03125, 

a 
a ,v/u 

d 
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u d 
^d  V * 

u 

1.982 2. 431 
1. 982 2. 406 
1. 982 2. 431 
2. 377 2,760 
2. 377 2. 713 
2. 773 3.067 
2. 773 3. 091 
3. 168 3. 469 
3. 168 3. 611 
3. 168 3. 492 
3. 564 3. 729 
3.564 3. 893 
3.564 3. 893 
3. 960 4. Oil 
3.960 4. 036 
4.751 4. 956 
4.751 4. 672 
4.751 4. 719 
4.751 4.743 
5.542 5. 097 
5. 542 5. 309 
5. 542 5.262 
6.333 5. 804 
6. 333 5. 829 
7. 124 6. 229 
7. 124 6. 088 
7. 915 6. 561 
7. 915 6. 536 
8. 706 6, 843 
8. 706 6. 820 
9. 893 7. 599 
9. 893 7. 293 
9. 893 7. 503 
11.871 7. 810 
11.871 8. 094 
13.849 8.519 
13.849 8. 779 
15.827 8. 848 
15.827 8. 895 
17.805 9. 321 
17.805 9. 439 
19.783 9. 887 
19.783 9. 840 
23. 739 10.478 
27.695 10.972 
27.695 11.044 
31.650 11.633 
31.650 11.610 
39.562 12.766 
49.452 13.639 
49.452 13.544 
59.342 14.323 
59.342 14.276 

Table C..6 Time-Ave 

'd  V 

121 
121 
121 
900 
900 
900 
900 

118.680 
118.680 
118.680 
138.459 
138.459 
158.238 
158.238 

79. 
79. 
79. 
98. 
98 
98 
98 

197 
197 
237 
237 

797 
797 
356 
356 

276.915 
276.915 
316 
316 
316 
316 

473 
473 
473 
473 

_d 
* 

15.031 
15.315 
15.409 
16.000 
15.763 
16 
16 
16 
16 
16 

210 
094 
636 
589 
517 

17.036 
17.180 
17.674 
17.793 
18.547 
18.688 
19.279 
19.351 
19.964 
19.940 
20 
20 
20 
20 

365 
271 
318 
224 

Time-Averaged Velocity Data, 
la.J\ = 0.03125, a a^v/u    = 0.008 

a 

x7X = 0.6, 
a 
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u "d u ■^d 

^d  V * ^d  V * 
u u 

1. 954 3. 115 31.284 12 341 
1. 954 3. 044 31.284 12.105 
2. 345 3. 705 39 105 13.096 
2. 345 3. 800 39 105 13.144 
2. 737 4. 271 48.882 13.733 
2. 737 4. 177 48. 882 13.685 
2. 737 4. 223 58.658 14 110 
3. 128 4. 860 58.658 14.229 
3. 128 4. 719 58.658 14.466 
3. 519 5.285 78.211 15.316 
3. 519 5. 285 78.211 15.268 
3. 519 5. 450 78.211 15.433 
3. 519 5.380 97.765 15.717 
3. 910 5. 805 97.765 16.046 
3. 910 5. 829 97.765 15.834 
4. 301 6. 018 117.317 16.519 
4. 301 6.018 117.317 16.495 
4. 692 6. 324 117.317 16.447 
4. 692 6. 276 117.317 16.519 
4. 692 6. 347 136.871 17.061 
4. 692 6. 300 136.871 17.132 
5 474 6. 796 156.424 17.486 
5. 474 6. 891 156.424 17.509 
5. 474 6. 820 195 530 18.383 
6. 256 7.481 195.530 18.452 
6. 256 7. 338 195.530 18.383 
6. 256 7. 362 234.636 19.090 
7. 038 7. 670 234.636 19.090 
7. 038 7. 834 234.636 19.042 
7, 820 8. 023 273.742 19.374 
7. 820 7. 999 273.742 19 491 
8. 602 8.496 273.742 19 397 
8. 602 8.589 312.848 19 846 
9. 384 8. 849 312 848 19.703 
9 384 8.754 351.955 19 963 
10.167 8. 990 351 955 19.846 
10.167 9.061 
11.731 9. 463 
11.731 9 510 
13.686 9. 911 
13.686 9.981 
15.642 10.312 
15.642 10.217 
15.642 10.288 
19.552 10 666 
19.552 11.043 
19.552 10.854 
23.463 11.375 
23.463 11.303 
23.463 11.303 
27.373 11 893 
27.373 11 893 
31.284 11.988 

Table C.7 Time-Averaged Velocity^Data, x^/X  =0.7, 
2a,/X = 0.03125,   a,v/u    = 0.008 

a d 
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'd V 

1. 939 
1. 939 
2. 326 
2. 326 
2. 326 
2. 713 
2. 713 
2. 713 
3. 099 
3. 099 
3. 486 
3. 486 
3. 873 
3. 873 
4. 259 
4. 259 
4. 259 
4. 259 
4. 646 
4. 646 
5. 419 
5. 419 
5. 419 
5. 419 
6. 193 
6. 193 
6. 193 
6. 193 
6. 966 
6. 966 
6 966 
7 739 
7 739 
8 512 
8 512 
8 512 
9 286 
9 286 

10 059 
10 059 
10 059 
11 605 
11 605 
11 605 
13 539 
13 539 
15 472 
15 472 
19 338 
19 338 
19 338 
19 . 338 
23 . 205 

d 
* 

u 

1. 959 
1. 959 
2. 926 
2. 950 
3. 091 
3. 611 
3. 492 
3. 540 
4 176 
4. 247 
4. 742 
4, 837 
5. 405 
5. 451 
5. 852 
6. 159 
5. 971 
6. 183 
6. 418 
6. 418 
7. 102 
7. 056 
7. 078 
7. 127 
7. 622 
8. 046 
7. 881 
8 094 
8 684 
8 542 
8 471 
9 037 
9 085 
9 487 
9 581 
9 698 

10 053 
10 053 
10 288 
10 077 
10 241 
10 878 
10 524 
10 430 
11 255 
11 255 
11 705 
11 845 
12 106 
12 602 
12 . 459 
12 . 224 
12 . 790 

^d V 

23.205 
23.205 
27.071 
27.071 
30,937 
30.937 
30.937 
38.670 
38.670 
48.336 
48.336 
58.002 
58.002 
77.334 
77.334 
77.334 
77.334 
96.666 
96.666 
115.998 
115.998 
115.998 
115.998 
115 998 
135.330 
135.330 
135.330 
154.662 
154.662 
154.662 
154.662 
193.326 
193.326 
193.326 
231.989 
231.989 
231.989 
270.653 
270.653 
309.317 
309.317 
347.981 
347 981 
347.981 
347.981 

648 
696 
861 
861 
426 
214 
308 
828 

13.852 
14.512 

12 
12 
12 
12 
13 
13 
13 
13 

442 
984 
149 
833 
716 
833 
951 
565 
471 
013 
061 
107 
085 
061 
533 
581 
462 
840 
004 
028 
958 
642 
759 
618 
397 
255 
255 

19.632 
19.704 

14. 
14. 
15. 
15. 
15. 
15. 
15. 
16. 
16. 
17 
17. 
17. 
17. 
17. 
17. 
17. 
17. 
17. 
18. 
18. 
17. 
18 
18 
18 
19 
19 
19 

19 
19 
20 
19 
20 
20 

917 
987 
058 
939 
081 
058 

Table C.8    Time-Averaged Velocity Data,   XJ/X = 0.8, 
2a^l\ = 0.03125, a a,v/u    = 0.008 

d 
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u "d U "d 
^d  V * 

u ^d  V * 
u 

1. 955 2. 194 31.285 14.441 
1 . 955 2. 265 31.285 14.299 
2. 346 3. 634 39.106 14.984 
2. 346 3.729 39.106 14.583 
2. 346 3.729 39.106 14.559 2. 737 4. 390 48.883 15.101 
2. 737 4 436 48.883 15.150 
3. 128 5. 121 48.883 15.314 
3. 128 5. 192 58.659 15.410 3. 520 5. 781 58.659 15.598 
3. 520 5. 640 58.659 15.740 3. 911 6, 207 58.659 15.740 
3. 911 6. 371 78.212 16.305 3. 911 6. 278 78.212 16 588 4. 302 6. 867 78.212 16.495 4. 302 6. 867 78.212 16.447 
4. 302 6. 914 97.765 17.060 4. 693 7.222 97.765 17.085 4. 693 . 7.457 117.318 17.297 4. 693 7. 598 117.318 17.273 4, 693 7. 244 117.318 17.557 4. 693 7 481 117.318 17.462 5. 475 8. 330 136.872 17.603 5. 475 8. 046 136.872 17.982 6. 257 9. 085 136.872 17.840 6. 257 9. 179 156.425 18.359 7. 039 9. 770 156.425 18 264 7. 039 9. 817 195.531 18 878 7. 821 10 453 195.531 18.878 7. 821 10.548 195.531 19.019 8. 603 10.902 195. 531 19.044 8. 603 10.807 234.637 19 609 9 385 11.279 234.637 19.420 9 385 11.326 234.637 19 445 10.168 11.492 273.743 19 775 10.168 11.751 273.743 19.868 11.732 12.201 312.849 20 081 1 1 732 12. 294 312.849 20.034 

13.687 12.719 351.956 20 247 13.687 12.932 351 956 20.247 
15.642 13.143 
15.642 12.954 
15.642 13.262 •: 
19.553 13.451 
19.553 13.663 
19 553 13.475 
23.464 13.710 
23.464 13.827 
23.464 13.922 
23.464 13.922 
27.374 14.277 
27.374 14.229 
31.285 14.370 

Table C.9 Time-Averaged Velocity Data, x/X = 0.9, 
2a^/A = 0.03125, a^v/u* = 0.008 
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:■< J > 

U "d 
* 

u !d 
^d  V * 

u 
^d  V * 

u 

1.935 2. 525 23. 200 14.181 
1. 935 2. 525 23. 200 14.276 
1.935 2. 595 27. 067 14.631 
2.322 3. 092 27. 067 14.631 
2.322 3. 162 27. 067 14.441 
2.322 3. 116 27. 067 14.488 
2.708 3. 823 30. 933 14.748 
2. 708 3. 751 30. 933 14.702 
2.708 3. 729 30. 933 14.843 
3.095 4. 201 30. 933 14.748 
3.095 4. 437 30. 933 14.960 
3.095 4. 223 38. 666 15.361 
3.095 4. 318 38. 666 15.149 
3. 482 4. 697 . 38. 666 15.008 
3. 482 4. 884 48. 332 15.385 
3.482 4. 838 48. 332 15.645 
3.482 4. 673 48. 332 15.575 
3.868 5. 405 48. 332 15.692 
3.868 5 380 57. 998 16.069 
3.868 5 475 57. 998 15.811 
4.255 . 5 782 57 998 15.881 
4.255 5. 804 77. 330 16.613 
4.642 6. 465 77. 330 16.684 
4.642 6. 371 77. 330 16.660 
4.642 6 419 96. 662 17.250 
5.415 7. 409 96. 662 17.438 
5.415 7. 621 96. 662 17.438 
5.415 7 621 115. 993 17.864 
6. 188 8. 258 115. 993 17.864 
6. 188 8. 188 115. 993 17.815 
6. 188 8 188 115. 993 17.815 
6.962 9. 180 135. 326 18.358 
6.962 9 061 135. 326 18.311 
6. 962 9 061 135. 326 18.287 
7.735 9 674 154. 657 18.594 
7.735 9 462 154 657 18.547 
7.735 9 722 154 657 18.618 
8.508 10 430 154 657 18 666 
8.508 10 477 193 321 19.326 
9.281 10 902 193 321 19. 231 
9 281 11 067 193 321 19.231 
9.281 10 832 231 985 19. 467 
10.055 11 398 231. 985 19.562 
10.055 11 350 231. 985 19.539 
11.601 12 082 270 649 19 917 
11.601 1 1 987 270 649 19. 822 
13 534 12 578 309 313 20.153 
13.534 12 671 309. 313 19. 963 
15.468 13 191 309 313 20.128 
15.468 13. 050 347 977 20. 223 
15.468 13. 120 347 977 20.128 
19.334 13 899 347 977 20 128 
19.334 13. 875 

Table C.IO Time-Averaged Velocity Data, x^/X  = 1.0, 
2a,/X = 0.03125, a,\;/u* = 0.008 

a d 
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* 
V .2/ * 

* 1  
u 

^d  V 
u 

^d  V V "iW 

1 944 1. 304 38.882 2. 242 
1. 944 1. 296 38.882 2. 275 
2. 333 1. 534 48.602 2. 269 
2.333 1. 483 48.602 2.226 
2. 722 1. 551 48. 602 2. 263 
2. 722 1. 571 58.322 2. 336 
3. Ill 1. 775 58.322 2. 120 
3. Ill 1. 793 58.322 2. 263 
3. HI 1. 779 58.322 2. 224 
3. 499 1.789 58.322 2. 216 
3. 499 1. 869 77.763 2. 081 
3. 499 1. 863 77.763 2. 134 
3. 888 1. 842 97.204 2. 061 
3. 888 1. 957 97.204 1. 951 
3. 888 1. 934 97.204 2.004 
4. 277 1. 989 97.204 2. 012 
4 277 1 957 116.645 2. 059 
4. 277 2. 022 116.645 2. 049 
4. 666 2. 067 116.645 1. 967 
4. 666 2.018 116.645 1. 965 
4. 666 2. 169 116.645 2. 063 
4. 666 2. 006 136.086 1. 877 
5. 444 2.277 136.086 1. 969 
5. 444 2. 177 136.086 1. 879 
5. 444 2.208 136.086 1. 867 
6. 221 2. 346 155.527 1. 849 
6. 221 2.342 . 155.527 1. 993 
6. 999 2.422 155.527 1. 822 
6. 999 2.507 194.408 1. 732 
7. 776 2. 489 194.408 1. 746 
7. 776 2. 579 233.290 1. 477 
7. 776 2. 499 233.290 1. 461 
8. 554 2. 630 272.172 1. 365 
8. 554 2.605 272.172 1. 344 
9. 720 2. 599 311.053 1. 273 
9 720 2.816 311.053 1. 247 
11.665 2. 577 349.935 1. 275 
11.665 2.705 
11.665 2. 658 
13.609 2. 644 
13.609 2. 677 
15.553 2. 603 
15.553 2. 552 
19.441 2. 440 
19.441 2.387 
23.329 2. 475 
23.329 2. 365 
27.217 2. 267 
27.217 2.277 
27.217 2. 254 
31.105 2. 214 
31.105 2 334 
31.105 2. 326 
31.105 2. 322 

Table C.ll Intensity Data, x /X = 0.1, 2a /X = 0.03125. 
a^v/u* = 0.008 '^ 
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* 
u J .2, * 

7t 

u Vu.Vu* 
^d  V ^"d /" ^d  V 

1. 978 1 267 39. 559 2. 261 
1. 978 1.269 49.448 2. 354 
2. 374 1.384 49.448 2. 261 
2. 374 1.421 49.448 2. 213 
2. 769 1. 609 59.338 2. 267 
2.769 1.568 59.338 2. 241 
3. 165 1.625 79.117 2. 184 
3. 165 1. 582 79.117 2. 140 
3. 165 1. 748 79.117 2. 124 
3. 165 1. 696 98.897 2. 043 
3. 560 1.750 98.897 2.049 
3. 560 1. 738 118.676 1. 968 
3. 956 1. 855 118.676 1. 938 
3. 956 1. 908 138.456 1. 962 
4. 352 1. 958 138.456 1. 926 
4. 352 1. 942 138.456 1. 952 
4. 747 2. 067 158.235 1. 960 
4. 747 2. 106 158.235 1. 940 
5. 538 2.243 197.794 1. 754 
5.538 2. 170 197.794 1.710 
5.538 2. 376 237.352 1. 722 
5. 538 2. 292 237.352 1. 659 
6.329 2.445 237.352 1. 694 
6. 329 2. 421 276.911 1. 425 
7. 121 2 570 276.911 1.449 
7. 121 2.566 316.470 1. 405 
7. 912 2. 597 316.470 1. 330 
7. 912 2. 760 316.470 1. 370 
8. 703 2. 726 356.029 1. 372 
8. 703 2.706 356.029 1. 411 
9. 890 2. 791 356.029 1. 338 
9. 890 2. 938 
11.868 2. 831 
11.868 2. 940 
11.868 2.882 
13.846 2.906 
13.846 2.843 
15.823 2. 799 
15.823 2.908 
17.802 2 795 
17.802 2. 779 
17 802 2. 728 
17.802 2 769 
19.779 2.843 
19.779 2.623 
19.779 2. 670 
23.735 2.593 
23.735 2 554 
27.691 2.470 
27.691 2.467 
31.647 2.439 
31.647 2. 350 
39.559 2. 257 
39.559 2. 302 

Table ^.12 Intensity Data, x /x = 0.2, 2a /X = 0.03125, 
ct^v/u* = 0.008 
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'd   V 

2. 001 
2. 001 
2. 001 
2. 401 
2. 401 

802 
802 
202 
202 
202 
202 
602 

3. 602 
3. 602 

003 
003 
003 
003 
403 
403 
403 
803 
803 

4. 803 
4. 803 

604 
604 
604 
404 
404 
404 
205 
205 

8. 005 
8. 005 
8. 806 
8. 806 
8. 806 
8. 806 
8. 806 
10.007 
10.007 
10.007 
10.007 
12.008 
12 008 
14.009 
14.009 
14.009 
14.009 
14.009 
16.010 
16.010 
18.012 

V^/u' 

2. 
2. 
3. 
3. 
3. 
3. 
3. 

4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 

5. 
5. 
5. 
6. 
6. 
6. 
7. 
7. 

0. 
0. 
1 

0. 716 
0. 789 
0. 724 

775 
791 
117 

1. 149 
1. 238 
1. 249 
1. 303 
1. 245 
1.311 
1. 439 
1. 400 
1. 447 
1. 485 
1. 568 
1. 500 
1. 623 
1. 663 
1. 661 
1. 781 
1. 815 
1. 896 
1. 852 
2. 001 
1. 918 
1. 902 
2. 090 
2. 145 
2. 094 
2. 368 

329 
507 
463 
578 
554 
742 
479 
527 

2. 857 
2. 752 
2. 845 
2. 790 
2. 963 
2. 985 

046 
126 
205 
280 
116 

3. 135 
3. 094 
3. 108 

2. 
2. 
2. 
2. 
2. 
2. 
2. 
2. 

3. 
3. 
3. 
3 
3 

* 
u V: ■>' 

18 012 3 054 
20 013 2 969 
20 013 3 084 
20 013 3 139 
20 013 3 074 
24 016 2 997 
24 016 3 050 
28 018 2 797 
28 018 2 748 
32 021 2 523 
32 021 2 623 
32 021 2 568 
40 026 2 400 
40 026 2 370 
50 033 2 319 
50 033 2 250 
50 033 2 246 
50 033 2 190 
50. 033 2 297 
60 039 2. 175 
60. 039 2. 297 
60. 039 2. 157 
60. 039 2. 216 
80. 052 2. 194 
80. 052 2. 210 
80. 052 2. 161 

100. 066 2. 088 
100. 066 2. 099 
120. 079 2. 090 
120. 079 2. 016 
120. 079 1. 973 
120. 079 2. 044 
140. 092 967 
140. 092 989 
160. 105 916 
160. 105 997 
160. 105 892 
200. 131 837 
200. 131 797 
240. 158 645 
240. 158 663 
280. 184 475 
280. 184 435 
320. 210 423 
320. 210 457 
320. 210 356 
320. 210 362 
320. 210 313 
360. 236 366 
360. 236 330 

Table  C.13 Intensity Data,   x 
a^v/u*   =0.008      ^ 

l\ = 0.3,   2a^/X = 0.03125, 
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* 
u 

^d — lu^ /u 
* 

u 
^d  V Vu.^// 

1. 955 0. 978 39.106 2. 688 
1 . 955 1. 000 48.883 2. 327 
2. 346 1. 069 48.883 2. 309 
2. 346 1. 103 58.659 2.218 
2. 737 1.283 58 659 2. 125 
2. 737 1 341 58.659 2. 156 
3. 128 1. 319 78.212 2. 156 
3. 128 1.404 78.212 2. 144 
3. 520 1. 513 97.765 2. 047 
3. 520 1. 555 97.765 2. 087 
3. 911 1.595 117.318 2.087 
3. 911 1.551 117.318 2. 081 
4. 302 1.714 136.872 1. 970 
4. 302 1.625 136.872 1. 964 
4. 302 1.646 156.425 1. 997 
4. 693 1. 658 156.425 1. 849 
4.693 1. 726 156.425 1. 880 
4. 693 1. 702 175.978 1. 882 
5. 475 2. 029 175.978 1. 817 
5. 475 2. 144 175.978 1. 807 
5.475 1. 986 195.531 1. 757 
6. 257 2. 174 195.531 1. 775 
6. 257 2. 039 234.637 I. 660 
6. 257 2.083 234.637 1. 666 
7. 039 2. 352 273.743 1. 474 
7. 039 2 396 273.743 1. 428 
7. 821 2. 362 312.849 1.379 
7. 821 2. 420 312.849 1. 363 
8. 603 2. 616 351.956 1. 371 
8. 603 2. 660 351.956 1. 331 
9.777 2.769 391.062 1. 383 
9. 777 2. 773 391.062 1. 293 
11.732 3. 017 391.062 1.293 
11.732 3. 142 
13.687 3. 045 
13.687 3.241 
13.687 3. 178 
13.687 3. 168 
15.642 3.279 y 

15 642 3. 140 
15.642 3. 315 
17.598 3. 196 
17.598 3 326 
17 598 3. 227 
19 553 3. 408 
19 553 3. 241 
19.553 3 473 
23.464 3. 313 
23.464 3 366 
27.374 3. 223 
27.374 3 237 
31.285 2.932 
31.285 2 981 
39.106 2. 587 

Table C.14 Intensity Data, x /X = 0.4, 2a /X = 0.03125, 
a,v/u* =0.008 ^ 
a 
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'd V 

2. 001 
2. 001 
2. 001 
2. 401 
2. 401 
2. 401 
2. 401 
2. 802 
2. 802 
3. 202 
3. 202 
3. 202 
3. 602 
3. 602 
3. 602 

602 
003 
003 
003 
003 
403 
403 
803 
803 
604 
604 

5. 604 
6. 404 
6. 404 
7. 205 
7. 205 
8.005 
8. 005 
8. 005 
8. 005 
8. 806 
8. 806 
10.007 
10.007 
10.007 
12 008 
12.008 
12 008 
14 009 
14.009 
16.010 
16 010 
16.010 
20.013 
20.013 
24.016 
24.016 
24.016 
28.018 

,2, * 

3. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4 
5. 
5. 

0. 
0. 
0. 
0. 

907 
923 
901 
995 

1. 036 
1. 102 
1. 108 
1. 266 
1. 309 
1. 399 
1. 461 
1. 473 
1. 459 
1. 541 
1 626 
1: 553 
1. 620 
1. 712 
1. 750 
1. 622 
1. 878 
1. 836 
1. 951 
1. 943 
2. 093 
2. 099 
2. 013 
2. 286 
2. 282 

400 
479 
603 
374 
575 
537 
551 

2. 615 
2. 868 

685 
826 
020 
988 
982 
033 
125 
179 

3. 269 
3. 199 
3. 306 
3. 291 
3. 434 
3. 281 
3. 348 
3. 179 

2. 
2 
2. 
2. 
2. 
2. 
2 

2 
2 
3. 
2. 
2, 
3. 
3. 
3. 

^c 1 V 

28 . 018 
32 . 021 
32 021 
40 026 
40 026 
50 033 
50 033 
60 039 
60 039 
80 052 
80 052 
100 066 
100 066 
120. 079 
120. 079 
120. 079 
140. 092 
140. 092 
140. 092 
160. 105 
160. 105 
160. 105 
200. 131 
200. 131 
200. 131 
240. 158 
240, 158 
280. 184 
280. 184 
320. 210 
320. 210 
360. 236 
360. 236 
360. 236 

2 
2 

{7u' 

3. 265 
3. 036 
3   129 
2. 774 
2. 882 
2. 392 
2. 446 

242 
214 

2. 099 
2. 087 
2. 063 
2. 047 
2. 017 
1. 969 
1. 955 
1. 945 
1. 907 
1. 923 
1. 868 
1. 778 
1. 856 
1. 788 
1. 702 
1. 770 
1. 636 
1. 660 
1. 413 
1. 409 
1. 325 
1. 313 
1. 294 
1. 264 
1. 325 

Table  C.15     Intensity Data,   x  /X =  0.5,   2a,/X =  0.03125, 
a^v/u* =  0.008 
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* r=^ * 
u 1/ f2/ * u ••/  . 2 , * 

^d  V \u' /u ^d~ >"d /^ 

1. 978 1. 548 59. 338 2. 214 
1. 978 1. 505 79. 117 2. 120 
1. 978 1. 482 79.117 2. 034 
2. 374 1.672 79.117 2. 061 
2.374 1. 638 98.897 2. 108 
2.769 1.736 98.897 2. 141 
2.769 1. 703 98.897 2. 061 
3. 165 1. 846 98.897 2. 089 
3. 165 1. 903 118.676 2. 014 
3. 165 1. 811 118. 676 2. 087 
3.560 2.008 118.676 2. 055 
3. 560 2.030 138.456 1. 944 
3.560 2. 022 138.456 1. 961 
3.956 2. 106 158.235 1. 936 
3.956 2.079 158.235 1. 869 
4.747 2.284 197.794 1.805 
4.747 2. 167 197.794 1. 795 
4. 747 2.235 237.352 1. 676 
4. 747 2. 277 237.352 1. 732 
5.538 2.408 276.911 1. 574 
5.538 2. 374 276.911 1.556 
5. 538 2.400 316.470 1. 098 
6. 329 2.521 316.470 1. 090 
6. 329 2. 652 316.470 1. 169 
7. 121 2. 547 
7. 121 2. 609 
7.912 2. 635 
7.912 2.766 
8.703 2.674 ■ 

8.703 2. 715 
9. 890 2.840 
9. 890 2.760 
9. 890 2.971 
11.868 2. 860 
11.868 2.840 
13.846 3. Oil 
13.846 3.003 
15.823 2. 917 
15.823 3.028 
17.802 3. 024 
17.802 3. 022 
19.779 3.067 
19.779 3.075 
23.735 3. 114 
23.735 3. 181 
27.691 3.020 
27.691 3. 120 
31.647 3.071 
31.647 3.044 
39.559 2. 832 
39.559 2. 740 , 
49.448 2.549 
49.448 2.562 
59.338 2.276 

Table C.16 Intensity Data, x /X - 0.6, 2a,/X - 0.03125, 
o^v/u* - 0.008 ° 
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* 
u t/ .2, " 

^d V \u^ /u 

1 . 955 1. 596 
1 955 1. 576 
2 346 1. 690 
2 346 1. 686 
2 737 1. 807 
2 737 1. 862 
2 737 1. 880 
3 128 1. 846 
3 128 1. 856 
3 520 2. 059 
3 520 2. 099 
3 520 2. 001 
3 520 2. 059 
3 911 2. HI 
3 911 2. 091 
4 302 2. 158 
4 302 2. 178 
4 693 2. 188 
4 693 2. 349 
4 693 2.222 
4 693 2. 202 
5 475 2. 317 
5. 475 2. 422 
5. 475 2. 385 
6 257 2.547 
6. 257 2. 353 
6. 257 2. 436 
7. 039 2. 440 
7. 039 2. 394 
7. 821 2. 557 
7. 821 2. 462 
8. 603 2. 468 
8. 603 2. 533 
9. 385 2. 553 
9. 385 2. 494 
9. 385 2. 583 

10. 168 2. 577 
10. 168 2. 603 
11. 732 2. 591 
11. 732 2 532 
13. 687 2. 710 
13. 687 2. 732 
13. 687 2. 641 
13. 687 2. 649 
15. 642 2. 597 
15. 642 2. 762 
15. 642 2 662 
19. 553 2. 716 
19. 553 2. 756 
19. 553 2. 686 
23. 464 2. 680 
23. 464 2. 772 
23. 464 2. 762 
27. 374 2. 803 

* 
u 

^d V . Vu i''^' 

27 374 2 740 
27 374 2 730 
31 285 2 661 
31 285 2 716 
31 285 2 708 
39 106 2 643 
39 106 2 633 
48 883 2 402 
48 883 2 434 
58 659 2 331 
58 659 2 297 
58. 659 2 299 
78. 212 2 085 
78. 212 2 Oil 
78. 212 2 083 
97. 765 2 055 
97. 765 2 001 
97. 765 1 993 

117. 318 2. 053 
117. 318 977 
117. 318 894 
117. 318 870 
136. 872 870 
136. 872 864 
156. 425 834 
156. 425 839 
195. 531 733 
195. 531 652 
195. 531 691 
234. 637 547 
234. 637 501 
234. 637 551 
273. 743 455 
273. 743 336 
273. 743 398 
312. 849 314 
312. 849 336 
351. 956 249 
351. 956 273 

Table C.17 Intensity Data, x /X = 0.7, 2a /X = 0.03125, 
a,v/u* =0.008 a 
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^d  V 
Tu- /u 

^d  V 
y u^-/u 

1. 933 1.168 23.198 2. 495 
1. 933 1.210 27.065 2. 507 
2.320 1. 202 27.065 2. 559 
2. 320 1. 228 30.931 2. 461 
2. 320 1.200 30.931 2. 474 
2.707 1. 425 30.931 2. 549 
2. 707 1. 345 38.664 2. 479 
2. 707 1. 389 38.664 2. 537 
3. 093 1 479 48.330 2 346 
3. 093 1.505 48.330 2. 332 
3.480 1.584 57.996 2. 242 
3. 480 1.598 57.996 2. 212 
3. 866 1. 782 77.328 2. 188 
3. 866 1.728 77.328 2. 019 
4. 253 1.832 77.328 2. 165 
4. 253 1.893 77.328 2. 063 
4. 253 1.931 96.660 1. 999 
4. 253 1. 852 96.660 1. 987 
4. 640 1. 943 115.992 1. 951 
4. 640 1. 945 115. 992 2. Oil 
5. 413 2. 196 115.992 1. 967 
5. 413 2.093 115.992 1. 931 
b. 413 2. 129 115.992 1. 957 
5. 413 2. 165 115.992 1. 881 
6. 186 2.278 135.324 1. 788 
6. 186 2. 234 135.324 1 826 
6. 186 2. 304 135.324 1. 804 
6. 186 2. 304 154.655 1. 820 
6. 959 2.360 154.655 1. 738 
6. 959 2. 378 154.655 1. 836 
6.959 2. 420 154,655 1. 778 
7. 733 2.410 193.319 1. 564 
7. 733 2.402 193.319 1. 708 
8. 506 2.509 193.319 1. 716 
8.506 2.585 231.983 1. 491 
8. 506 2. 386 231.983 1. 547 
9. 279 2.434 231.983 1. 564 
9. 279 2. 434 270.647 1 431 
10.053 2. 441 270.647 1. 419 
10.053 2. 495 309. 311 1. 353 
10.053 2.521 309.311 1 323 
11.599 2 577 347.975 1. 319 
11.599 2 457 347.975 1. 341 
11.599 2. 501 347.975 1. 371 
13.532 2. 621 347 975 1. 270 
13.532 2. 495 
15.465 2.509 
15.465 2.503 
19.332 2 479 
19.332 2.499 
19.332 2. 511 
19.332 2. 527 
23.198 2. 537 
23.198 2.461 

Table C.18  Intensity Data, x /X = 0.8, 2a,/X = 0.03125, 
a^v/u* = 0.008 
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* 
u 

^d  V V»//u* 
* 

u 
^d V Vu'//u* 

1. 955 1. 329 31.285 2. 315 
1. 955 1. 343 31 285 2. 402 '. 
2. 346 1. 369 31.285 2. 372 
2. 346 1. 414 39.106 2. 374 
2. 346 1.363 39.106 2. 364 
2.737 1. 556 39.106 2.313 
2. 737 1. 596 48.883 2. 285 
3. 128 1. 661 48.883 2. 315 
3. 128 1. 643 48.883 2. 303 
3. 520 1.728 58.659 2. 234 
3. 520 1. 718 58.659 2. 287 
3. 911 1. 829 58.659 2. 295 
3. 911 1. 888 58.659 2. 184 
3. 911 1. 892 78.212 2. 210 
4. 302 1. 884 78.212 1. 991 
4.302 1. 963 78.212 1. 981 
4. 302 1. 967 78.212 2. 095 
4. 693 2. 133 78.212 2. 068 
4. 693 2. 018 97.765 1. 918 
4. 693 2. 133 97.765 1.924 
4.693 2.089 117.318 2. 012 
4. 693 2.052 117.318 1. 929 
5. 475 2. 196 117.318 1. 906 
5.475 2. 208 117.318 1. 931 
6. 257 2. 354 136.872 1. 920 
6.257 2. 402 136.872 1. 874 
7. 039 2.419 136.872 1.902 
7. 039 2.344 156.425 1. 797 
7. 821 2. 498 156.425 1. 809 
7. 821 2. 494 195.531 1. 688 
8. 603 2.510 195.531 •: 1.740 
8. 603 2. 463 195.531 1. 663 
9. 385 2.477 195.531 1. 716 
9. 385 2.459 234.637 1 . 424 
10.168 2.486 234.637 1. 473 
10.168 2.443 234.637 1.473 
11.732 2.449 273.743 1.325 
11.732 2.480 273.743 1. 335 
11.732 2. 401 312.849 1.256 
13 687 2.421 312.849 1. 238 
13.687 2. 463 351.956 1. 301 
15.642 2. 417 351.956 1.284 
15.642 2.459 
15.642 2 394 
19 553 2. 319 
19.553 2. 354 
19.553 2. 415 
23.464 2.291 
23.464 2. 329 
23.464 2. 392 
23 464 2. 317 
27.374 2. 336 
27.374 2.396 
31.285 2 429 

Table  C.19       Intensity Data,   x  /X = 0.9,   2a /A = 0.03125, 
ci^v/u    = 0.008 
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* 
u 

^d  V Vu.^/u* 
* 

u 
^d V 

V .2/ * 

1. 933 1. 025 23.198 2. 321 
1. 933 1. 073 23.198 2, 313 
1. 933 1. 067 27.065 2. 392 
2. 320 1. 147 27.065 2. 283 
2. 320 1.194 27.065 2. 222 
2. 320 1. 174 27.065 2. 315 
2. 707 1. 402 30.931 2. 382 
2. 707 1. 373 30. 931 2. 265 
2. 707 1. 335 30. 931 2. 277 
3. 093 1. 472 30.931 2. 216 
3. 093 1.537 30.931 2. 243 
3. 093 1. 414 38. 664 2. 283 
3. 093 1. 464 38.664 2. 269 
3. 480 1. 694 38.664 2. 281 
3. 480 1.726 48.330 2. 313 
3. 480 1.654 48.330 2. 218 
3. 480 1. 611 48.330 2. 251 
3. 866 1. 813 48.330 2. 232 
3. 866 1. 793 57.996 2. 239 
3. 866 1.748 57.996 2. 190 
4. 253 1.863 57.996 2. 224 
4. 253 1. 896 77.328 2. 130 
4. 640 2. 023 77.328 2. 059 
4.640 1. 950 77.328 2. 077 
4.640 1. 998 96.660 2. 071 
5. 413 2. 150 96.660 1. 974 
5. 413 2.210 96.660 2. Oil 
5.413 2. 210 96.660 2. 166 
6. 186 2.247 115.992 1. 958 
6. 186 2. 295 115.992 2. 053 
6. 186 2. 224 115.992 2. 023 
6. 959 2.355 115.992 2. 007 
6. 959 2.450 135.324 1. 934 
6. 959 2. 347 135.324 1. 978 
7.733 2.400 135.324 1. 944 
7. 733 2.400 154.655 1. 930 
7. 733 2. 434 154.655 1. 896 
8. 506 2.497 154.655 1. 827 
8. 506 2. 529 154.655 1. 922 
9. 279 2. 579 154.655 1.884 
9. 279 2.573 193.319 1. 746 
9. 279 2. 585 193.319 1. 787 
10.053 2.567 193.319 1 835 
10.053 2.533 231.983 1 . 488 
11.599 2.511 231 983 1 462 
11.599 2. 529 231 983 1.476 
13.532 2. 545 270.647 1 383 
13.532 2. 553 270.647 1. 373 
15.465 2. 434 309.311 1. 317 
15.465 2.531 309.311 1. 323 
15.465 2.416 309.311 1. 331 
19.332 2. 390 347.975 1. 315 
19.332 2. 339 347.975 1. 295 
23.198 2.208 347.975 1. 317 

Table C.20 Intensity Data, x /A = 1.0, 2a-/X = 0.03125, 
a^v/u* = 0.008 ^ 
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u "d u ^4 
^d  V * 

u ^d  V 
u 

12.006 9. 484 200 105 20 991 
12.006 9. 186 200 105 20 942 
12.006 9. 384 250 132 21 238 
14.007 10.915 250 132 21 336 
14.007 10.964 300 158 21 436 
16.008 12.495 300 158 21 336 
16.008 12.544 300. 158 21 485 
18.010 13.780 400. 211 21 732 
18.010 13.978 400 211 21 732 
18.010 13.780 500. 263 22 126 
20.011 14.866 500 263 22. 077 
20.011 14.817 600. 316 22. 226 
22.012 15.705 600 316 22 522 
22.012 15.509 600. 316 22. 275 
22.012 15.756 700. 369 22. 571 
24.013 16.446 700. 369 22. 669 
24.013 16.299 800. 422 23. 114 
24.013 16.250 800. 422 22. 965 
26.014 16.940 800. 422 22. 916 
26.014 16.693 900. 474 23. 212 
26.014 16.793 900. 474 23. 361 
28.015 17.236 900. 474 23. 163 
28.015 17.138 900. 474 23. 212 
32.017 17.730 1000. 527 23. 560 
32.017 17.681 1000. 527 23. 560 
36.019 18.423 1400. 738 23. 550 
36.019 18.175 1400. 738 23. 459 
36.019 18. 224 1800. 948 23. 511 
40.021 18.472 
40.021 18.569 
40.021 18. 569 
46. 024 19.014 
46.024 19.014 
52.027 19.362 
52.027 19.310 
60.032 19.509 
60.032 19.558 
70.037 19.707 
70. 037 19.805 
80.042 19.805 
80.042 19.805 
80.042 20.003 
80.042 19.854 
90.047 20.052 
90.047 20.003 
100.053 20.152 
100.053 20.201 
120.063 20.299 
120.063 20.348 
140.074 20.448 
140.074 20.448 
160.084 20.644 
160.084 20.497 
160.084 20.793 

Table C.21 Time-Averaged Velocity Data, x^j/X = 0.1, 
2a,/X = 0.050, cL,v/u*  = 0.00165 

a d 
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* u. * u u d u d 
^d  V * ^d V * 

u u 

13. 698 7. 606 587. 073 21. 879 
13. 698 7. 606 587. 073 21 879 
15. 655 9. 484   ' 684. 918 22. 324 
15. 655 9. 632 684. 918 22. 324 
17. 612 12. 101 782. 764 22. 422 
17. 612 11. 902 782. 764 22 719 
19. 569 13. 335 782. 764 22. ̂ 22 
19. 569 13. 137 978. 455 23. 262 
21. 526 14. 027 978 455 23 214 
21. 526 14. 027 1369. 837 23. 312 
23. 483 14. 718 1565. 528 23. 312 
23. 483 14. 718 1565. 528 23. 362 
25. 440 15. 211 1761 219 oo 917 
25. 440 15. 163 1761. 219 22' 965 
27. 397 15. 656 
27. 397 15. 656 
31. 311 16. 250 
31. 311 16. 496 
31. 311 16. 250 
35. 224 16. 941 
35. 224 16. 742 
35. 224 It:. 891 
39. 138 17 137 
39. 138 17. 137 
45. 009 17. 534 
45. 009 17. 534 
50. 880 17 781 
50. 880 17 879 
58. 707 18. 175 
58. 707 18. 274 
68 492 18 374 
68. 492 18 422 
78. 276 18. 668 
78. 276 18 570 , 
97. 845 18 817 
97. 845 18. 867 

117. 415 19 113 
117. 415 19 262 
136 984 19 214 
136. 984 19 360 
136. 984 19. 410 
156. 553 19 508 
156. 553 19 608 
195. 691 19 855 
195. 691 19 905 
244. 614 20 199 
244 614 20 348 
293 536 20 496 
293 536 20 644 
293 536 20 695 
391. 382 21 089 
391. 382 21 039 
489 227 21 484 
489 227 21. 434 

Table C.22 Time-Averaged Velocity Data, x /X = 0 2 
2a^/X = 0.050, ct^v/u* = 0.00165     ' ' 
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* «, * ti u d u "d 
^d  V * 

u ^d V 
U 

20. on 8 101 700. 369 20 892 
20.Oil 7.902 • 700. 369 21 138 
20.Oil 8. 101 700 369 21 089 
22.012 8. 395 800. 422 21 533 
22.012 8.346 800 422 21 287 
24.013 8,790 J " 800. 422 21 484 
24.013 8.842 900. 474 21 682 
26.014 8. 989 900. 474 21 781 
26.014 9. 136 1000. 527 21 979 
28.015 9.531 1000. 527 22. 028 
28.015 9. 433 1200. 632 22 570 
32.017 10.174 1200. 632 22 521 
32.017 9. 977 1400 738 23. 115 
32.017 9.926 1400. 738 22 965 
36.019 10.718 1600 843 23 360 
36.019 10.667 1600 843 23 311 
40.021 11.261 1800 948 23 262 
40.021 11.261 1800 948 23 311 
46.024 12.347 
46.024 12.249 
52.027 13.039 
52.027 13.088 
60.032 13.976 
60.032 13.927 
60.032 13.878 
70.037 15.112 
70.037 15 014 
80.042 15.706 
80.042 15.853 1' . 

90.047 16.349 
90.047 16.447 
100.053 16.744 
100.053 16.891 
100.053 16.793 
120.063 17.335 
120.063 17.188 
140.074 17.534 
140.074 17.681 
160.084 17.929 
160.084 17.929 
200.105 18.422 
200.105 18.422 
200.105 18.275 
250.132 18.621 
250.132 18.915 
250.132 18.866 
300.158 19.153 
300.158 19.163 
400.211 19.806 
400.211 19.953 
500.263 20.397 
500.263 20.397 
600.316 20.892 
600.316 20.892 

Table C.23 Time-Averaged Velocity Data,  x /A = 0 3 
2a^/X = 0.050, a^v/u* = 0.00165'^ 
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* u * u 
u d u d 

^d  V 
u 

^d  V * 
u 

11.481 2. 671 114.807 13.543 
11.481 2. 576 124.374 14.068 
11.481 2. 481 124.374 13.733 
11.481 2. 481 124.374 13.638 
13.394 3. 194 133.941 14.020 
13.394 3. 148 133.941 14.210 
15.308 3. 576 133.941 14.115 
15.308 3. 671 153.076 14.736 
17.221 3. 958 153.076 14.687 
17.221 4. 005 172.210 15.164 
17.221 3. 910 168.383 14.974 
19.135 4. 530 168.383 15.021 
19.135 4. 435 210.479 15.498 
21.048 4. 815 210.479 15.593 
21.048 4 959 239.181 16.023 
22.961 5. 198 239.181 15.975 
22.961 5. 198 287.017 16.547 
24.875 5. 580 287.017 16.547 
24.875 5. 436 382.690 17.311 
26.788 5. 675 382.690 17.311 
26.788 5. 865 382.690 17.358 
26.788 5. 913 574.035 18.645 
30.615 6. 342 574.035 18.645 
30.615 6. 485 765.380 19.600 
30.615 6. 342 765.380 19.694 
36.355 7 439 956.724 20.315 
36.355 7 391 956.724 20.172 
42.096 7 819 1148.070 20.839 
42.096 7 868 1148.070 20.792 
47.836 8. 440 1339.414 21.267 
47.836 8 345 1339.414 21.364 
53.576 8. 822 1530.759 21.744 
53.576 8 869 1530.759 21 698 
59.317 9 441 1722.104 21.983 
59.317 9 633 1722.104 22.078 

i         59.317 9 394 1722.104 22.032 
1         65.057 10 015 1913.449 22.127 

65.057 10 062 1913.449 22.078 
70.798 10 349 1913.449 22.078 
70.798 10 539 
76 538 10 921 
76 538 11. 016 
76.538 11 254 
86.105 11. 778 
86.105 11 922 
95.673 12 350 
95.673 12 494 
95.673 12 494 
105.240 12 922 
105.240 12 922 
114.807 13 448 
114.807 13 494 
114.807 13 494 

1        114.807 13 399 

Table C.24 Time-Averaged Velocity Data,  x /A = 0.4, 
2a /X = 0.050, a^v/u* = 0.00165'^ 
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* u, * u u d u ,d 
^d  V * 

u ^d  V .* 
u 

14.007 4. 646 207. 993 15. 557 
16.008 5. 485 207. 993 15. 509 
17.018 5.631 236. 356 16. 101 
17.018 5. 631 236. 356 16. 101 
18.909 6. 026 274. 173 16. 496 
18.909 6 124 274. 173 16. 397 
18.909 6.273 321. 444 16. 941 
18.909 6. 174 321. 444 16. 843 
20.799 6.371 321. 444 17. 039 
20.799 6. 371 378. 169 17. 582 
22,690 6.866 378. 169 17. 532 
22.690 6. 718 472. 711 18. 274 
22.690 6. 766 472. 711 18. 176 
24.581 7. 161 472. 711 18. 324 
24.581 7. 113 567. 254 18. 818 
26.472 7.309 567. 254 18. 866 
26.472 7.261 756. 339 20. 101 
30.253 7.704 756. 339 19. 905 
30.253 7. 704 945. 423 20. 941 
34.035 8.298 945. 423 20 941 
34.035 8.099 1 134 508 21 681 
34. 035 8. 150 1134 508 21 533 
37.817 8. 346 1323 592 22 275 
37.817 8. 396 1323 592 22 275 
43.489 8. 643 1323 592 22 275 
43.489 8. 889 1512 677 22 471 
43.489 8.842 1512 677 22 423 
49.162 9. 136 1701 762 22 572 
49.162 9. 136 1890 846 22 818 
56.725 9.581 „ 1890 846 22 818 
56.725 9. 581 
66.180 10.027 
66.180 la. 027 
75.634 10.520 
75.634 10.520 
85.088 11.161 
85.088 11. 113 
94.542 11.509 
94.542 11.607 
103.996 12.052 
103.996 11.853 
113.451 12.545 
113.451 12.545 
132.359 13.237 
132.359 13.385 
151.268 14.027 
151.268 14.274 
151.268 14.125 
170.176 14.669 
170.176 14.719 
189.085 15.262 
189.085 15.262 
189.085 15.212 
189.085 15.310 

Table C.25 Time-Averaged Velocity Data, xj/X = 0.5, 
2a^/X = 0.050. a v/u* = 0.00165 
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'd V 

15.214 
17. 116 
17.116 
19.017 
19. 017 
20.919 
20 
20 
20. 
22. 
22. 

919 
919 
919 
821 
821 

22.821 
22.821 
24.723 
24.723 
24.723 
26.625 
26.625 
26.625 
30.428 
30.428 
30.428 
34.231 
34.231 
38.035 
38.035 
43.740 
43.740 
49.446 
49.446 
57.053 
57.053 
66 
66. 
76 
76 

561 
561 
070 
070 

95.088 
95.088 

114. 
114. 
133. 
133. 
133. 
152. 
152. 
171. 
171. 
171. 
190. 
190. 
190. 
228. 
228.210 
266.245 

105 
105 
123 
123 
123 
140 
140 
158 
158 
158 
175 
175 
175 
210 

8. 
8. 
8. 
8. 
9. 
9. 
9. 
8. 
9. 
9. 
9. 

006 
247 
346 
988 
039 
285 
237 
940 
039 
138 
087 

8. 889 
8. 889 
9. 433 
9. 237 
9. 237 
9. 582 
9. 433 
9. 532 
9. 778 
9. 877 
9. 976 
10.225 
10.075 
10.321 

225 
618 
717 
865 

u 

10. 
10. 
10. 
10. 
10.816 
11.162 

162 
507 
459 
804 
804 
495 
347 
137 
137 

13.878 
13.632 
13.927 
14.373 
14.521 
14.767 
14.965 
15. 064 
15.557 
15.410 
15.410 
16.199 
16.250 
16.793 

1. 
1. 
1. 
1. 

11. 
12. 
12. 
13. 
13. 

> d V 

266 245 
304 280 
304 280 
304 280 
342 315 
342 315 
342. 315 
342 315 
380 350 
380 350 
380 350 
380 350 
475. 438 
475 438 
570. 526 
570. 526 
665. 613 
665. 613 
760. 701 
760. 701 
950. 876 
950. 876 

1141. 051 
1141. 051 
1141. 051 
1331. 226 
1331. 226 
1521. 402 
1521. 402 
1711. 577 
1711. 577 
1901. 752 
1901. 752 

743 
237 
989 
941 
385 
187 
337 
139 
682 
S31 
484 
583 

18.324 
18.373 
18.966 

015 
510 
459 
954 

19.904 
10. 744 

16. 
17. 
16. 
16. 
17. 
17. 
17. 
17. 
17. 
17. 
17. 
17. 

19. 
19 
19 
19. 

20. 
21 
21 
21 
22 
22 
22 

792 
287 
584 
534 
128 
224 
521 

22.521 
22.867 
22.867 
23.015 
23.065 

Table C.26    Time-Averaged Velocity Data,   x^/^  =0.6, 
2a^/X = 0.050, a,v/u* = 0.00165 a 
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* 
u "d 

* 
u "d 

^d  V * 
u ^d  V * 

u 
11.573 10.225 279 680 17 780 
11.573 10.225 347 190 18 175 
13.502 11.014 347 190 18 423 
13.502 10.964 433 987 18 818 
15.431 11.457 433 987 13 916 
15.431 11.358 530 428 19 460 
17.360 11.756 530 428 19 706 
17.360 11.657 530 428 19 658 
19.288 11.903 626 870 19 954 
19.288 11.953 626 870 20 002 
21.217 12.100 732 955 20 546 
21.217 12.001 732. 955 20 645 
23.146 12.150 867 974 21. 039 
23.146 12.198 867 974 21 090 
25.075 12.150 1060. 856 21. 831 
25.075 12.249 1060. 856 21. 583 
27.004 12.249 1060. 856 21. 733 
27.004 12.198 1253. 739 22. 423 
27.004 12.198 1253. 739 22. 522 
27.004 12.249 1446. 622 22. 965 
30.861 12.396 1446. 622 22. 965 
30.861 12.446 1446. 622 23. 165 
34.719 12.495 1639. 506 23. 461 
34.719 12.495 1639. 506 23. 559 
38.577 12. 644 1639. 506 23. 509 
38.577 12.644 
44.363 12.793 • 
44.363 12.793 
52.078 12.793 
52.078 12.892 
52.078 12.743 
52.078 12.940 
52.078 12.841 
61.722 13.236 
61.722 13.188 
75.224 13.532 
75.224 13.385 
90.655 13.927 
90.655 13.927 
108.015 14.372 ■ 

108.015 14.324 
125.374 14.817 >/ 
125.374 14.916 
144.662 15.410 
144.662 15.607 
144.662 15.559 
163.951 15.756 
163.951 15.953 
163.951 16.002 
192.883 16.495 
192.883 16.447 
231.460 17.039 
231.460 16.892 
279.680 17.730 

Table C.27 Time-Averaged Velocity Data, x^j/X =0.7, 
2a^/X = 0.050, a v/u = 0,00165 
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* 
u "^ 

* 
u "d 

^d  V * 
u ^d  V 

u 

13.240 12.013 283.718 19. 361 
13.240 12.304 283.713 13. 932 
13.240 12.256 233.718 19. 121 
15.132 13.067 283.718 19. 121 
15.132 13.019 378.291 19. 980 
15.132 13.115 378.291 19. 791 
15.132 13.304 378.291 19. 834 
17.023 13,542 472.863 20. 213 
17.023 13.590 472.863 20. 458 
18.914 13. 782 472.863 20. 213 
18.914 13.782 567.436 20. 743 
20.806 13.878 567.436 20. 695 
20.806 14.019 756.581 21. 603 
22.697 14.211 756.581 21. 459 
22.697 14.067 945.727 22 222 
26.480 14.497 945.727 22. 222 
26.480 14.401 1134.872 22. 795 
30.263 14.401 1134.872 22. 795 
30.263 14.593 1324.017 23 129 
30.263 14.593 1324.017 23 174 
34.046 14.734 1324.017 23 031 
34.046 14.734 1513.162 23 556 
37.829 14.878 1513.162 23 604 
37.829 14.830 1513.162 23 748 
41.612 15.068 1513.162 23 700 
41.612 14.974 1513.162 23 700 
41.612 15.068 1702.308 23 986 
45.395 15.116 
45.395 15.212 
52.961 15.402 
52.961 15.356  , 
52.961 15.450 
66.201 15.783 
66.201 15.738 
75.658 15.927 
75.658 15.738 
75.658 15.879 
94.573 16.261 
94.573 16.165 
94.573 16.309 
113.487 16.594 
113.487 16.690 
141.859 17.120 
141.859 17.216 
141.859 17.168 
160.773 17.597 
160.773 17.691 
160.773 17.406 
189.145 18.073 
189.145 18.169 
189.145 18.169 
236.432 18.646 
236.432 18. 694 
283.718 19.121 

Table C.28 Time-Averaged Velocity Data, x /X = 0.8, 
2a,/X = 0.050, a,v/u*" = 0.0016§ 
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* 
u "d 

* 
u ""d 

^d  V 
-u ^d  V * 

u 

11.872 14.233 158.290 19. 508 
13.850 14.825 158.290 19. 607 
15.829 15.557 158.290 19. 508 
15.829 15.606 197.862 19. 853 
17.808 15.903 197.862 19. 903 
17.808 15.952 247.328 20. 448 
19.786 16.298 247.323 20. 251 
19.786 16.396 247.328 20 498 
19.786 16.446 296.793 20. 597 
21.765 16.594 296.793 20 794 
21.765 16.742 296.793 20 646 
21.765 16.693 395.725 21 189 
23.743 16.940 395.725 21. 140 
23.743 16.841 494.656 21 535 
25.722 17.187 494.656 21 486 
25.722 17.137 593.587 21 831 
27.701 17.335 593.587 21 683 
27.701 17.384 692.518 22 177 
31.658 17.236 692.518 22 029 
31.658 17.285 791.449 22 375 
31.658 17.483 791.449 22 375 
31.658 17.236 989.312 23 066 
31.658 17.483 989.312 23 115 
35.615 17.631 1187.174 23 609 
35.615 17.384 1187.174 23 703 
35.615 17.483 . 1385.036 23 560 
35.615 17.483 1582.899 23 906 
39.572 17.532 1582.899 23 856 
39.572 17.582 1780.761 24 449 
39.572 17.631 1780.761 24 301 
45.508 17.829 
45.508 17.680 
45.508 17.730 
51.444 17.977 
51.444 17.927 
59.359 17.927 
59.359 18.076 
59.359 17.977 ■ ■ 

69.252 18.224 
69.252 18.174 
79.145 18.224 
79.145 18.273 
79.145 18.322 
89.038 18.421 
89.038 18.569 
98.931 18.816 
98.931 18.668 
98.931 18.767 
118.717 19.014 
118.717 19.063 
138.504 19.261 
138.504 19.458 
138.504 19.063 
138.504 19.458 

Table C.29 Time-Averaged Velocity Data, x^/X  =0.9, 
2a^/X = 0.050, a v/u* = 0.00165 
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* 
u "d 

* 
u "d 

^d  V * 
u ^d  V * 

u 

11.082 12 065 157. 000 20 648 
11.082 12. 208 157.000 20 505 
11.082 12. 112 ■ 184.706 20 743 
11.082 11. 922 184.706 20 648 
11.082 11. 969 230.882 21 076 
12.929 13. 782 230.882 21 269 
12.929 13. 544 277.059 21. 365 
12.929 13. 639 277 059 21. 412 
14.776 14. 925 277.059 21 365 
14.776 14. 925 369.411 21. 658 
14.776 15. 020 369. 411 21. 650 
16.624 15. 594 554.117 22. 270 
16.624 15. 689 554.117 22. 174 
18.471 16. 404 738.823 22. 651 
18.471 16. 309 738.823 22 555 
20.318 17. 118 923.529 23. 079 
20.318 16. 833 923.529 23 032 
22.165 17. 264 1108.234 23 272 
22.165 17. 406 1108.234 23. 222 
22.165 17. 549 1292.940 23 558 
25.859 17. 978 1292.940 23. 606 
25.859 18. 026 1292.940 23. 606 
29.553 18. 454 1477.646 23 796 
29.553 18. 454 1477.646 23. 749 
33.247 18 788 1477.646 23. 796 
33.247 18. 692 1477.646 23. 749 
36.941 18. 978 1662.352 23. 796 
36.941 19. 026 1662.352 23. 606 
36.941 18 978 1662.352 23. 701 
36.941 18. 931 1662.352 23. 749 
44.329 19. 169 
44.329 19. 121 
55:412 19. 457 
55.412 19. 552 
55.412 19. 505 
64.647 19. 552 
64.647 19. 600 
73.882 19. 790 
73.882 19. 838 
73.882 19. 647 
83.118 19 886 
83. 118 19. 933 
83. 118 19. 790 
83. 118 19 886 
92.353 20. 171 
92.353 20 076 
92.353 19. 981 
110.823 20 267 
110.823 20. 124 
129.294 20. 171 
129.294 20. 267 
129.294 20. 314 
129.294 20. 267 
157.000 20. 695 

Table C.30 Time-Averaged Velocity Data, xj/A = 1.0 
2a^/X = 0.050, a v/u* = 0.0016^ 
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APPENDIX D 

COMPARISON OF LINEAR THEORY 

WITH VELOCITY MEASUREMENTS 

Calculations of the flowfield over waves of infinitesimal 

amplitude were performed with the linear boundary layer code 

of Abrams [2],  Abrams solved the Orr-Sommerfield equation using 

the SUPORT code developed at Sandia Laboratories.  (See references 

[34] and [40].) The linear analysis predicts wave-induced velocity 

perturbations that are normalized with the amplitude of the wave. 

The perturbations were multiplied by the wave amplitude in order 

to compare the infinitesimal wave results with the finite amplitude 

wave measurements.  The calculations were made with three turbulence 

models:  a quasilaminar model, Model C , and Model D . 

The predicted amplitudes and phases of the wave-induced velocity 

responses for 2a^/X = 0.0125 and a^v/u = 0.008 (equivalent to Re = 6400) 

are shown in Figures D.l and D.2 respectively.  Amplitude and 

phase results for the wave with 2a,/X = 0.05 and a^v/u = 0.00165 
a d 

(equivalent to Re^ = 38,8000) are shown in Figures D.3 and D.4. 

Only semi-quantitative comparisons with the data are appropriate 

since the linear calculations are for a boundary layer rather than 

a channel flow and are strictly valid only for waves of infinitesimal 

amplitude.  The purpose of the above calculations was to show the 

relative amplitude and phase differences between the three turbulence 

models at the flow conditions of the data. 
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